{"title":"环境水中单质硫的提取方法及其在东京湾蓝潮样品中的应用。","authors":"Shogo Sugahara, Hiroto Higa, Mitsuki Iwama, Yoshiyuki Nakamura, Tetsunori Inoue, Yukiko Senga, Michiko Egawa, Yasushi Seike","doi":"10.1007/s44211-025-00717-9","DOIUrl":null,"url":null,"abstract":"<div><p>A simple method for determining elemental sulfur in environmental water was developed and applied to seawater samples collected immediately after the occurrence of blue tides in Tokyo Bay. To investigate the concentration and extraction methods, artificial elemental sulfur was quantitatively produced by oxidizing a sulfide solution with an iodine solution, then used as a standard reagent in the experiments. To concentrate the elemental sulfur in the water sample, glass filter paper (GF/F) was used to filter and collect the elemental sulfur. The elemental sulfur was then extracted using <i>n</i>-hexane, the main component of petroleum ether; however, the recovery of elemental sulfur from the wet glass filter paper was low, and remained so even when the glass filter paper was dried. We, therefore, used a mixture of <i>n</i>-hexane and an acetone solvent, which is a hydrophilic organic solvent, for extraction and succeeded in recovering more than 90% of the elemental sulfur from the wet glass filter paper. Using this solvent mixture, we extracted and quantified elemental sulfur from seawater samples collected after the occurrence of blue tide, and detected 0.36–0.38 mgS L<sup>–1</sup> of elemental sulfur in the near-surface layer. We also found that the elemental sulfur concentrations were higher in the surface layer than in the bottom layer. Therefore, we demonstrated that the quantification of elemental sulfur is important to better understand the blue tide phenomenon.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":"41 4","pages":"495 - 501"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44211-025-00717-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Method for extracting elemental sulfur in environmental water and its application to blue tide samples from Tokyo Bay, Japan\",\"authors\":\"Shogo Sugahara, Hiroto Higa, Mitsuki Iwama, Yoshiyuki Nakamura, Tetsunori Inoue, Yukiko Senga, Michiko Egawa, Yasushi Seike\",\"doi\":\"10.1007/s44211-025-00717-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple method for determining elemental sulfur in environmental water was developed and applied to seawater samples collected immediately after the occurrence of blue tides in Tokyo Bay. To investigate the concentration and extraction methods, artificial elemental sulfur was quantitatively produced by oxidizing a sulfide solution with an iodine solution, then used as a standard reagent in the experiments. To concentrate the elemental sulfur in the water sample, glass filter paper (GF/F) was used to filter and collect the elemental sulfur. The elemental sulfur was then extracted using <i>n</i>-hexane, the main component of petroleum ether; however, the recovery of elemental sulfur from the wet glass filter paper was low, and remained so even when the glass filter paper was dried. We, therefore, used a mixture of <i>n</i>-hexane and an acetone solvent, which is a hydrophilic organic solvent, for extraction and succeeded in recovering more than 90% of the elemental sulfur from the wet glass filter paper. Using this solvent mixture, we extracted and quantified elemental sulfur from seawater samples collected after the occurrence of blue tide, and detected 0.36–0.38 mgS L<sup>–1</sup> of elemental sulfur in the near-surface layer. We also found that the elemental sulfur concentrations were higher in the surface layer than in the bottom layer. Therefore, we demonstrated that the quantification of elemental sulfur is important to better understand the blue tide phenomenon.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":\"41 4\",\"pages\":\"495 - 501\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44211-025-00717-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44211-025-00717-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-025-00717-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Method for extracting elemental sulfur in environmental water and its application to blue tide samples from Tokyo Bay, Japan
A simple method for determining elemental sulfur in environmental water was developed and applied to seawater samples collected immediately after the occurrence of blue tides in Tokyo Bay. To investigate the concentration and extraction methods, artificial elemental sulfur was quantitatively produced by oxidizing a sulfide solution with an iodine solution, then used as a standard reagent in the experiments. To concentrate the elemental sulfur in the water sample, glass filter paper (GF/F) was used to filter and collect the elemental sulfur. The elemental sulfur was then extracted using n-hexane, the main component of petroleum ether; however, the recovery of elemental sulfur from the wet glass filter paper was low, and remained so even when the glass filter paper was dried. We, therefore, used a mixture of n-hexane and an acetone solvent, which is a hydrophilic organic solvent, for extraction and succeeded in recovering more than 90% of the elemental sulfur from the wet glass filter paper. Using this solvent mixture, we extracted and quantified elemental sulfur from seawater samples collected after the occurrence of blue tide, and detected 0.36–0.38 mgS L–1 of elemental sulfur in the near-surface layer. We also found that the elemental sulfur concentrations were higher in the surface layer than in the bottom layer. Therefore, we demonstrated that the quantification of elemental sulfur is important to better understand the blue tide phenomenon.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.