美国加州中央谷地氚氦地下水年龄的机器学习预测

IF 5 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter
{"title":"美国加州中央谷地氚氦地下水年龄的机器学习预测","authors":"Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter","doi":"10.1029/2024wr038031","DOIUrl":null,"url":null,"abstract":"Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations <span data-altimg=\"/cms/asset/2c84bf4c-65ef-408f-b284-a7eb7282f213/wrcr27674-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"50\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0001\" display=\"inline\" location=\"graphic/wrcr27674-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 2410 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2410</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=2410)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and tritium-helium groundwater ages <span data-altimg=\"/cms/asset/51ee1a1c-1ccf-49b5-a5ef-8e855095a500/wrcr27674-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"51\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0002\" display=\"inline\" location=\"graphic/wrcr27674-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis n equals 1157 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1157</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$(n=1157)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only <span data-altimg=\"/cms/asset/4adb4963-cf4e-4466-893e-6e60d61f6eb7/wrcr27674-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"52\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27674-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mi data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0003\" display=\"inline\" location=\"graphic/wrcr27674-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"4,2\" data-semantic-content=\"2\" data-semantic-role=\"endpunct\" data-semantic-speech=\"tilde 30 percent sign\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-children=\"3,1\" data-semantic-content=\"0\" data-semantic-parent=\"5\" data-semantic-role=\"equality\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"4\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">∼</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">30</mn></mrow><mi data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\">%</mi></mrow>${\\sim} 30\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA\",\"authors\":\"Abdullah Azhar, Indrasis Chakraborty, Ate Visser, Yang Liu, Jory Chapin Lerback, Erik Oerter\",\"doi\":\"10.1029/2024wr038031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations <span data-altimg=\\\"/cms/asset/2c84bf4c-65ef-408f-b284-a7eb7282f213/wrcr27674-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"50\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27674-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"4\\\" data-semantic-content=\\\"0,5\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis n equals 2410 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27674-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4\\\" data-semantic-content=\\\"0,5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis n equals 2410 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2410</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$(n=2410)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and tritium-helium groundwater ages <span data-altimg=\\\"/cms/asset/51ee1a1c-1ccf-49b5-a5ef-8e855095a500/wrcr27674-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"51\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27674-math-0002.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"4\\\" data-semantic-content=\\\"0,5\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis n equals 1157 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27674-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4\\\" data-semantic-content=\\\"0,5\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis n equals 1157 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1,3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1157</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$(n=1157)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only <span data-altimg=\\\"/cms/asset/4adb4963-cf4e-4466-893e-6e60d61f6eb7/wrcr27674-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"52\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr27674-math-0003.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"4,2\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-role=\\\"endpunct\\\" data-semantic-speech=\\\"tilde 30 percent sign\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mrow data-semantic-children=\\\"3,1\\\" data-semantic-content=\\\"0\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mjx-mrow data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"empty\\\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,∼\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mi data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr27674:wrcr27674-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr27674-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,2\\\" data-semantic-content=\\\"2\\\" data-semantic-role=\\\"endpunct\\\" data-semantic-speech=\\\"tilde 30 percent sign\\\" data-semantic-type=\\\"punctuated\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"3,1\\\" data-semantic-content=\\\"0\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relseq\\\"><mrow data-semantic-=\\\"\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"empty\\\"></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,∼\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">∼</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">30</mn></mrow><mi data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"punctuation\\\">%</mi></mrow>${\\\\sim} 30\\\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038031\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038031","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地下水年龄提供了对补给率、流速和对污染物的脆弱性的洞察。通过机器学习(ML)基于更容易获得的参数预测地下水年龄的能力将提高我们指导地下水资源可持续管理的能力。在本研究中,ML模型在来自加利福尼亚中央山谷的氚浓度(n=2410)$(n=2410)$和氚-氦地下水年龄(n=1157)$(n=1157)$的大型数据集上进行了训练和测试,加利福尼亚中央山谷是一个具有复杂土地利用、灌溉和水管理实践的大型地下水盆地。机器学习模型基于63个特征进行训练,包括位置、井建设信息、景观特征、气候变量、水化学和稳定同位素。Bagging回归器方法可以准确地将地下水样本分类为现代或前现代(F1-score = 0.91),而连续氚-氦地下水年龄的ML预测精度有限,只能解释该数据集中约30%的变异性。一般来说,ML地下水年龄预测主要依赖于以下方面的特征:(a)地下水补给来源,(b)污染物历史,(c)含水层材料,(d)井建设,以及(e)流动路径上的地球化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Prediction of Tritium-Helium Groundwater Ages in the Central Valley, California, USA
Groundwater ages provides insight into recharge rates, flow velocities, and vulnerability to contaminants. The ability to predict groundwater ages based on more accessible parameters via Machine Learning (ML) would advance our ability to guide sustainable management of groundwater resources. In this study, ML models were trained and tested on a large data set of tritium concentrations (n=2410)$(n=2410)$ and tritium-helium groundwater ages (n=1157)$(n=1157)$ from the California Central Valley, a large groundwater basin with complex land use, irrigation, and water management practices. The ML models were trained on 63 features, including location, well construction information, landscape characteristics, and climate variables, water chemistry, and stable isotopes. The Bagging regressor method can accurately classify (F1-score = 0.91) groundwater samples as either modern or pre-modern whereas the accuracy of the ML prediction of continuous tritium-helium groundwater ages is limited and explains only 30%${\sim} 30\%$ of the variability in this data set. In general, ML groundwater age prediction relies mostly on features related to (a) the source of groundwater recharge, (b) contaminant history, (c) aquifer materials, (d) well construction, and (e) geochemical reactions along flow paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信