多晶金属在高应变速率变形过程中的晶粒细化及其影响:晶体塑性模型

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wen An, Qi-Lin Xiong, Chuan-zhi Liu, Zhenhuan Li, Jian Wang, Songlin Yao
{"title":"多晶金属在高应变速率变形过程中的晶粒细化及其影响:晶体塑性模型","authors":"Wen An, Qi-Lin Xiong, Chuan-zhi Liu, Zhenhuan Li, Jian Wang, Songlin Yao","doi":"10.1016/j.jmst.2024.12.030","DOIUrl":null,"url":null,"abstract":"Corresponding to the continuous dynamic recrystallization mechanism, we proposed a dislocation entanglement model and an energy-based criterion to capture the formation of subgrain boundaries during high strain rate deformation. A physical relationship between grain refinement and dislocation evolution is established and incorporated into the crystal plasticity constitutive model, where the spatial position of the subgrain boundaries can be determined by the energy minimization path. The developed constitutive model is implemented to simulate the dynamic compression and tension tests of pure copper by the crystal plasticity finite element method. Results show that the developed grain refinement model based on the dislocation entanglement gives good agreement with the experimental data validating its feasibility and rationality. The strengthening effect of grain refinement on the flow stress of metals at high strain rates depends on the competition between the strengthening of grain boundary and the softening of dislocation consumption during grain refinement. Further, a series of dynamic compressions are performed on copper samples with different grain sizes to explore the strengthening effect of grain refinement. The corresponding mechanisms of strengthening are analyzed and their respective contributions are also discussed in detail. The developed model can accurately predict the grain refinement of metals and capture its effect on strain hardening under high strain rate deformation.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling\",\"authors\":\"Wen An, Qi-Lin Xiong, Chuan-zhi Liu, Zhenhuan Li, Jian Wang, Songlin Yao\",\"doi\":\"10.1016/j.jmst.2024.12.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corresponding to the continuous dynamic recrystallization mechanism, we proposed a dislocation entanglement model and an energy-based criterion to capture the formation of subgrain boundaries during high strain rate deformation. A physical relationship between grain refinement and dislocation evolution is established and incorporated into the crystal plasticity constitutive model, where the spatial position of the subgrain boundaries can be determined by the energy minimization path. The developed constitutive model is implemented to simulate the dynamic compression and tension tests of pure copper by the crystal plasticity finite element method. Results show that the developed grain refinement model based on the dislocation entanglement gives good agreement with the experimental data validating its feasibility and rationality. The strengthening effect of grain refinement on the flow stress of metals at high strain rates depends on the competition between the strengthening of grain boundary and the softening of dislocation consumption during grain refinement. Further, a series of dynamic compressions are performed on copper samples with different grain sizes to explore the strengthening effect of grain refinement. The corresponding mechanisms of strengthening are analyzed and their respective contributions are also discussed in detail. The developed model can accurately predict the grain refinement of metals and capture its effect on strain hardening under high strain rate deformation.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.12.030\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.12.030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对连续动态再结晶机制,我们提出了位错纠缠模型和基于能量的准则来捕捉高应变速率变形过程中亚晶界的形成。建立了晶粒细化与位错演化之间的物理关系,并将其纳入晶体塑性本构模型,其中亚晶界的空间位置可通过能量最小化路径确定。将建立的本构模型应用晶体塑性有限元法模拟纯铜的动态压缩和拉伸试验。结果表明,基于位错纠缠的晶粒细化模型与实验数据吻合较好,验证了模型的可行性和合理性。晶粒细化对高应变速率下金属流变应力的强化作用取决于晶粒细化过程中晶界强化与位错消耗软化之间的竞争关系。在此基础上,对不同晶粒尺寸的铜试样进行了一系列动态压缩实验,探索晶粒细化的强化效果。分析了相应的强化机制,并详细讨论了它们各自的作用。所建立的模型能够准确地预测金属的晶粒细化,并捕捉其在高应变速率变形下对应变硬化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling

Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling
Corresponding to the continuous dynamic recrystallization mechanism, we proposed a dislocation entanglement model and an energy-based criterion to capture the formation of subgrain boundaries during high strain rate deformation. A physical relationship between grain refinement and dislocation evolution is established and incorporated into the crystal plasticity constitutive model, where the spatial position of the subgrain boundaries can be determined by the energy minimization path. The developed constitutive model is implemented to simulate the dynamic compression and tension tests of pure copper by the crystal plasticity finite element method. Results show that the developed grain refinement model based on the dislocation entanglement gives good agreement with the experimental data validating its feasibility and rationality. The strengthening effect of grain refinement on the flow stress of metals at high strain rates depends on the competition between the strengthening of grain boundary and the softening of dislocation consumption during grain refinement. Further, a series of dynamic compressions are performed on copper samples with different grain sizes to explore the strengthening effect of grain refinement. The corresponding mechanisms of strengthening are analyzed and their respective contributions are also discussed in detail. The developed model can accurately predict the grain refinement of metals and capture its effect on strain hardening under high strain rate deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信