即插即用肌电控制通过一种自校准随机森林通用模型。

Xinyu Jiang, Chenfei Ma, Kianoush Nazarpour
{"title":"即插即用肌电控制通过一种自校准随机森林通用模型。","authors":"Xinyu Jiang, Chenfei Ma, Kianoush Nazarpour","doi":"10.1088/1741-2552/adada0","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Electromyographic (EMG) signals show large variabilities over time due to factors such as electrode shifting, user behavior variations, etc substantially degrading the performance of myoelectric control models in long-term use. Previously one-time model calibration was usually required each time before usage. However, the EMG characteristics could change even within a short period of time. Our objective is to develop a self-calibrating model, with an automatic and unsupervised self-calibration mechanism.<i>Approach</i>. We developed a computationally efficient random forest (RF) common model, which can (1) be pre-trained and easily adapt to a new user via one-shot calibration, and (2) keep calibrating itself once in a while by boosting the RF with new decision trees trained on pseudo-labels of testing samples in a data buffer.<i>Main results</i>. Our model has been validated in both offline and real-time, both open and closed-loop, both intra-day and long-term (up to 5 weeks) experiments. We tested this approach with data from 66 non-disabled participants. We also explored the effects of bidirectional user-model co-adaption in closed-loop experiments. We found that the self-calibrating model could gradually improve its performance in long-term use. With visual feedback, users will also adapt to the dynamic model meanwhile learn to perform hand gestures with significantly lower EMG amplitudes (less muscle effort).<i>Significance</i>. Our RF-approach provides a new alternative built on simple decision tree for myoelectric control, which is explainable, computationally efficient, and requires minimal data for model calibration. Source codes are avaiable at:https://github.com/MoveR-Digital-Health-and-Care-Hub/self-calibrating-rf.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plug-and-play myoelectric control via a self-calibrating random forest common model.\",\"authors\":\"Xinyu Jiang, Chenfei Ma, Kianoush Nazarpour\",\"doi\":\"10.1088/1741-2552/adada0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Electromyographic (EMG) signals show large variabilities over time due to factors such as electrode shifting, user behavior variations, etc substantially degrading the performance of myoelectric control models in long-term use. Previously one-time model calibration was usually required each time before usage. However, the EMG characteristics could change even within a short period of time. Our objective is to develop a self-calibrating model, with an automatic and unsupervised self-calibration mechanism.<i>Approach</i>. We developed a computationally efficient random forest (RF) common model, which can (1) be pre-trained and easily adapt to a new user via one-shot calibration, and (2) keep calibrating itself once in a while by boosting the RF with new decision trees trained on pseudo-labels of testing samples in a data buffer.<i>Main results</i>. Our model has been validated in both offline and real-time, both open and closed-loop, both intra-day and long-term (up to 5 weeks) experiments. We tested this approach with data from 66 non-disabled participants. We also explored the effects of bidirectional user-model co-adaption in closed-loop experiments. We found that the self-calibrating model could gradually improve its performance in long-term use. With visual feedback, users will also adapt to the dynamic model meanwhile learn to perform hand gestures with significantly lower EMG amplitudes (less muscle effort).<i>Significance</i>. Our RF-approach provides a new alternative built on simple decision tree for myoelectric control, which is explainable, computationally efficient, and requires minimal data for model calibration. Source codes are avaiable at:https://github.com/MoveR-Digital-Health-and-Care-Hub/self-calibrating-rf.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adada0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adada0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:由于电极移动、用户行为变化等因素,肌电图(EMG)信号随着时间的推移呈现出很大的变化,这大大降低了肌电控制模型在长期使用中的性能。以前,每次使用前通常需要进行一次性模型校准。然而,即使在短时间内,肌电特征也可能发生变化。我们的目标是开发一个具有自动和无监督的自校准机制的自校准模型。方法:我们开发了一个计算效率高的随机森林(RF)通用模型,该模型可以(1)通过一次性校准进行预训练并轻松适应新用户,并且(2)通过使用数据缓冲区中测试样本的伪标签训练的新决策树来增强RF,不时地进行自我校准。主要结果:我们的模型在离线和实时、开环和闭环、日间和长期(长达5周)实验中都得到了验证。我们用66名健全参与者的数据测试了这种方法。我们还在闭环实验中探讨了双向用户模型自适应的影响。我们发现自校准模型在长期使用中可以逐步提高其性能。有了视觉反馈,用户也会适应动态模型,同时学会用更低的肌电振幅(更少的肌肉努力)来做手势。意义:我们基于随机森林的方法为肌电控制应用提供了一种基于简单决策树的新选择,该方法可解释,计算效率高,并且需要最少的数据进行模型校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plug-and-play myoelectric control via a self-calibrating random forest common model.

Objective. Electromyographic (EMG) signals show large variabilities over time due to factors such as electrode shifting, user behavior variations, etc substantially degrading the performance of myoelectric control models in long-term use. Previously one-time model calibration was usually required each time before usage. However, the EMG characteristics could change even within a short period of time. Our objective is to develop a self-calibrating model, with an automatic and unsupervised self-calibration mechanism.Approach. We developed a computationally efficient random forest (RF) common model, which can (1) be pre-trained and easily adapt to a new user via one-shot calibration, and (2) keep calibrating itself once in a while by boosting the RF with new decision trees trained on pseudo-labels of testing samples in a data buffer.Main results. Our model has been validated in both offline and real-time, both open and closed-loop, both intra-day and long-term (up to 5 weeks) experiments. We tested this approach with data from 66 non-disabled participants. We also explored the effects of bidirectional user-model co-adaption in closed-loop experiments. We found that the self-calibrating model could gradually improve its performance in long-term use. With visual feedback, users will also adapt to the dynamic model meanwhile learn to perform hand gestures with significantly lower EMG amplitudes (less muscle effort).Significance. Our RF-approach provides a new alternative built on simple decision tree for myoelectric control, which is explainable, computationally efficient, and requires minimal data for model calibration. Source codes are avaiable at:https://github.com/MoveR-Digital-Health-and-Care-Hub/self-calibrating-rf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信