高断裂韧性、耐低温降解的牙龈软组织一体化氧化锆基牙。

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0137
Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang
{"title":"高断裂韧性、耐低温降解的牙龈软组织一体化氧化锆基牙。","authors":"Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang","doi":"10.34133/bmr.0137","DOIUrl":null,"url":null,"abstract":"<p><p>Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the \"surface\" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the \"inner\" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high \"inner\" structure stability and \"surface\" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl<sub>12</sub>O<sub>19</sub> and equiaxed Al<sub>2</sub>O<sub>3</sub> were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr<sup>2+</sup>), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr<sup>2+</sup>/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0137"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756602/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.\",\"authors\":\"Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang\",\"doi\":\"10.34133/bmr.0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the \\\"surface\\\" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the \\\"inner\\\" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high \\\"inner\\\" structure stability and \\\"surface\\\" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl<sub>12</sub>O<sub>19</sub> and equiaxed Al<sub>2</sub>O<sub>3</sub> were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr<sup>2+</sup>), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr<sup>2+</sup>/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0137\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756602/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化锆陶瓷基台断裂韧性低、易发生低温降解(LTD)、软组织整合不足等缺点极大地限制了氧化锆陶瓷基台的应用。将坚硬的全陶瓷材料的“表面”融入牙龈软组织,同时提升“内部”的抗LTD和断裂韧性是一项具有挑战性的工作。复合陶瓷是提高材料综合性能的有效手段。在本研究中,我们旨在开发一种同时具有高“内部”结构稳定性和高“表面”生物活性的氧化锆复合基牙,并探讨其性能改善的机制。因此,采用Pechini方法将拉长的SrAl12O19和等轴Al2O3引入氧化锆基体。不同形状的增强剂可以提高复合陶瓷的密度,减小晶粒尺寸,增加相稳定性,从而提高复合陶瓷的断裂韧性和LTD敏感性。此外,释放的锶离子(Sr2+)在不牺牲材料力学性能的前提下,可以通过Sr2+/钙敏感受体/SH3结构域结合蛋白5轴激活巨噬细胞的M2极化,从而激活氧化锆表面的生物能力,从而促进成纤维细胞的胶原基质合成和血管内皮细胞的血管生成。这一成功的案例为在陶瓷基体中引入含有生物功能元素的增强剂,开发先进的高强度和生物活性全陶瓷材料提供了一种新的策略。该方法为全陶瓷材料在软组织相关领域的广泛应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high "inner" structure stability and "surface" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl12O19 and equiaxed Al2O3 were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr2+), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr2+/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信