生物陶瓷表面形貌调节免疫成骨。

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.34133/bmef.0089
Jianxin Hao, Lin Du, Yuening He, Chengtie Wu
{"title":"生物陶瓷表面形貌调节免疫成骨。","authors":"Jianxin Hao, Lin Du, Yuening He, Chengtie Wu","doi":"10.34133/bmef.0089","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aims to clarify the effects of bioceramic interface cues on macrophages. <b>Impact Statement:</b> Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring. This study provides insights into the effects of bioceramic micro-groove surface structures on macrophages. <b>Introduction:</b> With the development of bone tissue engineering methods, bioceramics have been used for bone repair. After the implantation of bioceramics, innate immune response that occurs at the interface of materials can deeply influence the subsequent inflammation and bone regeneration progress. Therefore, the exploration and regulation of immune response of the bioceramic interface will be beneficial to promote the bone regeneration effects. <b>Methods:</b> In this study, bioceramics with micro-groove structures on the surface are fabricated by digital light processing 3-dimensional printing technology. Then, micro-groove structures with different spacings (0, 25, 50, and 75 μm) are prepared separately to explore the effects on macrophages. <b>Results:</b> The large spacing micro-groove structure can promote the M2 polarization and osteoinductive cytokine secretion of macrophage. The reason is that the large spacing micro-groove structure can induce directional arrangement of macrophage so as to change the phenotype and cytokine secretion. Further researches show that macrophage of the large spacing micro-groove structure can promote the osteogenic differentiation of bone mesenchymal stem cells, which can benefit osteogenesis and osteointegration. <b>Conclusion:</b> This study offers an effective and application potential method for bone repair.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0089"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756600/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioceramic Surface Topography Regulating Immune Osteogenesis.\",\"authors\":\"Jianxin Hao, Lin Du, Yuening He, Chengtie Wu\",\"doi\":\"10.34133/bmef.0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This study aims to clarify the effects of bioceramic interface cues on macrophages. <b>Impact Statement:</b> Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring. This study provides insights into the effects of bioceramic micro-groove surface structures on macrophages. <b>Introduction:</b> With the development of bone tissue engineering methods, bioceramics have been used for bone repair. After the implantation of bioceramics, innate immune response that occurs at the interface of materials can deeply influence the subsequent inflammation and bone regeneration progress. Therefore, the exploration and regulation of immune response of the bioceramic interface will be beneficial to promote the bone regeneration effects. <b>Methods:</b> In this study, bioceramics with micro-groove structures on the surface are fabricated by digital light processing 3-dimensional printing technology. Then, micro-groove structures with different spacings (0, 25, 50, and 75 μm) are prepared separately to explore the effects on macrophages. <b>Results:</b> The large spacing micro-groove structure can promote the M2 polarization and osteoinductive cytokine secretion of macrophage. The reason is that the large spacing micro-groove structure can induce directional arrangement of macrophage so as to change the phenotype and cytokine secretion. Further researches show that macrophage of the large spacing micro-groove structure can promote the osteogenic differentiation of bone mesenchymal stem cells, which can benefit osteogenesis and osteointegration. <b>Conclusion:</b> This study offers an effective and application potential method for bone repair.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0089\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究生物陶瓷界面线索对巨噬细胞的影响。影响声明:近年来,有许多研究探讨了界面地形线索对巨噬细胞极化和细胞因子分泌的影响。然而,生物陶瓷界面线索对巨噬细胞的作用和潜在机制仍有待探索。本研究为生物陶瓷微槽表面结构对巨噬细胞的影响提供了新的见解。随着骨组织工程技术的发展,生物陶瓷已被广泛应用于骨修复。生物陶瓷植入后,材料界面处发生的先天免疫反应会深刻影响随后的炎症和骨再生进程。因此,探索和调控生物陶瓷界面的免疫反应将有利于促进骨再生效果。方法:采用数字光处理三维印刷技术,制备表面具有微沟槽结构的生物陶瓷。然后,分别制备不同间距(0、25、50和75 μm)的微槽结构,研究其对巨噬细胞的影响。结果:大间距微槽结构可促进巨噬细胞M2极化和骨诱导细胞因子分泌。其原因是大间距微槽结构可以诱导巨噬细胞定向排列,从而改变表型和细胞因子分泌。进一步研究表明,具有大间距微槽结构的巨噬细胞可促进骨间充质干细胞的成骨分化,有利于成骨和骨整合。结论:本研究为骨修复提供了一种有效且具有应用潜力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioceramic Surface Topography Regulating Immune Osteogenesis.

Objective: This study aims to clarify the effects of bioceramic interface cues on macrophages. Impact Statement: Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring. This study provides insights into the effects of bioceramic micro-groove surface structures on macrophages. Introduction: With the development of bone tissue engineering methods, bioceramics have been used for bone repair. After the implantation of bioceramics, innate immune response that occurs at the interface of materials can deeply influence the subsequent inflammation and bone regeneration progress. Therefore, the exploration and regulation of immune response of the bioceramic interface will be beneficial to promote the bone regeneration effects. Methods: In this study, bioceramics with micro-groove structures on the surface are fabricated by digital light processing 3-dimensional printing technology. Then, micro-groove structures with different spacings (0, 25, 50, and 75 μm) are prepared separately to explore the effects on macrophages. Results: The large spacing micro-groove structure can promote the M2 polarization and osteoinductive cytokine secretion of macrophage. The reason is that the large spacing micro-groove structure can induce directional arrangement of macrophage so as to change the phenotype and cytokine secretion. Further researches show that macrophage of the large spacing micro-groove structure can promote the osteogenic differentiation of bone mesenchymal stem cells, which can benefit osteogenesis and osteointegration. Conclusion: This study offers an effective and application potential method for bone repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信