多感官自然解码高密度漫射光学断层扫描。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-01-23 DOI:10.1117/1.NPh.12.1.015002
Kalyan Tripathy, Zachary E Markow, Morgan Fogarty, Mariel L Schroeder, Alexa M Svoboda, Adam T Eggebrecht, Bradley L Schlaggar, Jason W Trobaugh, Joseph P Culver
{"title":"多感官自然解码高密度漫射光学断层扫描。","authors":"Kalyan Tripathy, Zachary E Markow, Morgan Fogarty, Mariel L Schroeder, Alexa M Svoboda, Adam T Eggebrecht, Bradley L Schlaggar, Jason W Trobaugh, Joseph P Culver","doi":"10.1117/1.NPh.12.1.015002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies.</p><p><strong>Aim: </strong>High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications. Although early visual decoding studies with HD-DOT have been promising, decoding of naturalistic auditory and multisensory stimulus information from HD-DOT data has not been established.</p><p><strong>Approach: </strong>Audiovisual decoding was investigated using HD-DOT data collected from participants who viewed a library of movie clips. A template-matching strategy was used to decode which movie clip a participant viewed based on their HD-DOT data. Factors affecting decoding performance-including trial duration and number of decoding choices-were systematically evaluated.</p><p><strong>Results: </strong>Decoding accuracy was 94.2% for four-way decoding utilizing 4 min of data per trial as a starting point. As parameters were made more stringent, decoding performance remained significantly above chance with strong effect sizes down to 15-s trials and up to 32 choices. Comparable decoding accuracies were obtained when cortical sampling was confined to visual and auditory regions and when participants were presented with purely auditory or visual clips.</p><p><strong>Conclusions: </strong>HD-DOT data sample cortical hemodynamics with sufficient resolution and fidelity to support decoding complex, naturalistic, multisensory stimuli via template matching. These results provide a foundation for future studies on more intricate decoding algorithms to reconstruct diverse features of novel naturalistic stimuli from HD-DOT data.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015002"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multisensory naturalistic decoding with high-density diffuse optical tomography.\",\"authors\":\"Kalyan Tripathy, Zachary E Markow, Morgan Fogarty, Mariel L Schroeder, Alexa M Svoboda, Adam T Eggebrecht, Bradley L Schlaggar, Jason W Trobaugh, Joseph P Culver\",\"doi\":\"10.1117/1.NPh.12.1.015002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies.</p><p><strong>Aim: </strong>High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications. Although early visual decoding studies with HD-DOT have been promising, decoding of naturalistic auditory and multisensory stimulus information from HD-DOT data has not been established.</p><p><strong>Approach: </strong>Audiovisual decoding was investigated using HD-DOT data collected from participants who viewed a library of movie clips. A template-matching strategy was used to decode which movie clip a participant viewed based on their HD-DOT data. Factors affecting decoding performance-including trial duration and number of decoding choices-were systematically evaluated.</p><p><strong>Results: </strong>Decoding accuracy was 94.2% for four-way decoding utilizing 4 min of data per trial as a starting point. As parameters were made more stringent, decoding performance remained significantly above chance with strong effect sizes down to 15-s trials and up to 32 choices. Comparable decoding accuracies were obtained when cortical sampling was confined to visual and auditory regions and when participants were presented with purely auditory or visual clips.</p><p><strong>Conclusions: </strong>HD-DOT data sample cortical hemodynamics with sufficient resolution and fidelity to support decoding complex, naturalistic, multisensory stimuli via template matching. These results provide a foundation for future studies on more intricate decoding algorithms to reconstruct diverse features of novel naturalistic stimuli from HD-DOT data.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"12 1\",\"pages\":\"015002\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.12.1.015002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

意义:从大脑活动中解码自然内容具有重要的神经科学和临床意义。关于视觉场景和可理解语音的信息已经通过功能性磁共振成像(fMRI)和皮质电成像从皮层活动中解码出来,但这些技术的广泛应用受到这些技术的限制。目的:高密度漫射光学断层扫描(HD-DOT)提供接近功能磁共振成像的图像质量,但具有光学方法所提供的安静、开放的扫描环境,从而为更自然的研究和应用打开了大门。虽然HD-DOT的早期视觉解码研究很有前景,但从HD-DOT数据解码自然听觉和多感官刺激信息尚未建立。方法:使用从观看电影剪辑库的参与者收集的HD-DOT数据来调查视听解码。一种模板匹配策略被用来根据参与者的HD-DOT数据解码他们观看的电影片段。系统地评估了影响解码性能的因素,包括试验时间和解码选择的数量。结果:以每次试验4分钟的数据为起点,四路解码的解码准确率为94.2%。随着参数越来越严格,解码性能仍然显著高于概率,在15-s试验和多达32个选择时具有很强的效应量。当皮层取样仅限于视觉和听觉区域时,以及当参与者呈现纯听觉或视觉片段时,获得了相当的解码准确性。结论:HD-DOT数据样本皮层血流动力学具有足够的分辨率和保真度,支持解码复杂,自然,多感官刺激通过模板匹配。这些结果为未来研究更复杂的解码算法以从HD-DOT数据中重建新颖自然刺激的各种特征提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multisensory naturalistic decoding with high-density diffuse optical tomography.

Significance: Decoding naturalistic content from brain activity has important neuroscience and clinical implications. Information about visual scenes and intelligible speech has been decoded from cortical activity using functional magnetic resonance imaging (fMRI) and electrocorticography, but widespread applications are limited by the logistics of these technologies.

Aim: High-density diffuse optical tomography (HD-DOT) offers image quality approaching that of fMRI but with the silent, open scanning environment afforded by optical methods, thus opening the door to more naturalistic research and applications. Although early visual decoding studies with HD-DOT have been promising, decoding of naturalistic auditory and multisensory stimulus information from HD-DOT data has not been established.

Approach: Audiovisual decoding was investigated using HD-DOT data collected from participants who viewed a library of movie clips. A template-matching strategy was used to decode which movie clip a participant viewed based on their HD-DOT data. Factors affecting decoding performance-including trial duration and number of decoding choices-were systematically evaluated.

Results: Decoding accuracy was 94.2% for four-way decoding utilizing 4 min of data per trial as a starting point. As parameters were made more stringent, decoding performance remained significantly above chance with strong effect sizes down to 15-s trials and up to 32 choices. Comparable decoding accuracies were obtained when cortical sampling was confined to visual and auditory regions and when participants were presented with purely auditory or visual clips.

Conclusions: HD-DOT data sample cortical hemodynamics with sufficient resolution and fidelity to support decoding complex, naturalistic, multisensory stimuli via template matching. These results provide a foundation for future studies on more intricate decoding algorithms to reconstruct diverse features of novel naturalistic stimuli from HD-DOT data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信