Lourdes Montserrat Hernández-Cortés, Víctor Manuel Mendoza-Núñez, Alda Rocío Ortiz-Muñiz, María Del Carmen García-Rodríguez
{"title":"绿茶多酚60 (P60-GT)对六价铬致小鼠基因毒性损伤和细胞凋亡的量效效应","authors":"Lourdes Montserrat Hernández-Cortés, Víctor Manuel Mendoza-Núñez, Alda Rocío Ortiz-Muñiz, María Del Carmen García-Rodríguez","doi":"10.1080/15287394.2025.2455956","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to examine the dose-response effects of polyphenon-60 derived from green tea (P60-GT) on hexavalent chromium [Cr(VI)]-induced genotoxic damage and apoptosis. Male Hsd:ICR mice were divided into 4 groups: (1) Control (vehicle only), (2) P60-GT (15, 30, or 45 mg/kg gavage), (3) Cr(VI) (20 mg/kg of CrO<sub>3</sub> intraperitoneally), and (4) P60-GT+CrO<sub>3</sub> (P60-GT administered 4 hr before CrO<sub>3</sub>). Peripheral blood samples were collected at 24, 48, and 72 hr to assess the number of micronuclei (MN), apoptosis, and cell viability, while plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured at 0 and 48 hr. Cr(VI) significantly increased MN frequency, suppressed 8-OHdG repair, and reduced cell viability. Pre-treatment with P60-GT reduced MN frequency by up to 74%, with the 30 mg/kg dose demonstrating the highest efficacy. This dose restored cell viability, enhanced 8-OHdG repair, and enhanced apoptosis, suggesting activation of DNA repair and apoptotic pathways as potential antigenotoxic mechanisms. The 15 mg/kg dose exhibited anti-apoptotic effects, while the 30 and 45 mg/kg doses promoted apoptosis. However, the 45 mg/kg dose resulted in 100% lethality by 72 hr, likely due to synergistic toxicity with Cr(VI). These findings demonstrate the dose-dependent protective effects of P60-GT and emphasize the need for dosage optimization to maximize therapeutic benefits while minimizing toxicity.</p>","PeriodicalId":54758,"journal":{"name":"Journal of Toxicology and Environmental Health-Part A-Current Issues","volume":" ","pages":"479-494"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dose-response effect of polyphenon-60 from green tea (P60-GT) on hexavalent chromium-induced genotoxic damage and apoptosis in mice.\",\"authors\":\"Lourdes Montserrat Hernández-Cortés, Víctor Manuel Mendoza-Núñez, Alda Rocío Ortiz-Muñiz, María Del Carmen García-Rodríguez\",\"doi\":\"10.1080/15287394.2025.2455956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to examine the dose-response effects of polyphenon-60 derived from green tea (P60-GT) on hexavalent chromium [Cr(VI)]-induced genotoxic damage and apoptosis. Male Hsd:ICR mice were divided into 4 groups: (1) Control (vehicle only), (2) P60-GT (15, 30, or 45 mg/kg gavage), (3) Cr(VI) (20 mg/kg of CrO<sub>3</sub> intraperitoneally), and (4) P60-GT+CrO<sub>3</sub> (P60-GT administered 4 hr before CrO<sub>3</sub>). Peripheral blood samples were collected at 24, 48, and 72 hr to assess the number of micronuclei (MN), apoptosis, and cell viability, while plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured at 0 and 48 hr. Cr(VI) significantly increased MN frequency, suppressed 8-OHdG repair, and reduced cell viability. Pre-treatment with P60-GT reduced MN frequency by up to 74%, with the 30 mg/kg dose demonstrating the highest efficacy. This dose restored cell viability, enhanced 8-OHdG repair, and enhanced apoptosis, suggesting activation of DNA repair and apoptotic pathways as potential antigenotoxic mechanisms. The 15 mg/kg dose exhibited anti-apoptotic effects, while the 30 and 45 mg/kg doses promoted apoptosis. However, the 45 mg/kg dose resulted in 100% lethality by 72 hr, likely due to synergistic toxicity with Cr(VI). These findings demonstrate the dose-dependent protective effects of P60-GT and emphasize the need for dosage optimization to maximize therapeutic benefits while minimizing toxicity.</p>\",\"PeriodicalId\":54758,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health-Part A-Current Issues\",\"volume\":\" \",\"pages\":\"479-494\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health-Part A-Current Issues\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15287394.2025.2455956\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part A-Current Issues","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2025.2455956","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dose-response effect of polyphenon-60 from green tea (P60-GT) on hexavalent chromium-induced genotoxic damage and apoptosis in mice.
This study aimed to examine the dose-response effects of polyphenon-60 derived from green tea (P60-GT) on hexavalent chromium [Cr(VI)]-induced genotoxic damage and apoptosis. Male Hsd:ICR mice were divided into 4 groups: (1) Control (vehicle only), (2) P60-GT (15, 30, or 45 mg/kg gavage), (3) Cr(VI) (20 mg/kg of CrO3 intraperitoneally), and (4) P60-GT+CrO3 (P60-GT administered 4 hr before CrO3). Peripheral blood samples were collected at 24, 48, and 72 hr to assess the number of micronuclei (MN), apoptosis, and cell viability, while plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured at 0 and 48 hr. Cr(VI) significantly increased MN frequency, suppressed 8-OHdG repair, and reduced cell viability. Pre-treatment with P60-GT reduced MN frequency by up to 74%, with the 30 mg/kg dose demonstrating the highest efficacy. This dose restored cell viability, enhanced 8-OHdG repair, and enhanced apoptosis, suggesting activation of DNA repair and apoptotic pathways as potential antigenotoxic mechanisms. The 15 mg/kg dose exhibited anti-apoptotic effects, while the 30 and 45 mg/kg doses promoted apoptosis. However, the 45 mg/kg dose resulted in 100% lethality by 72 hr, likely due to synergistic toxicity with Cr(VI). These findings demonstrate the dose-dependent protective effects of P60-GT and emphasize the need for dosage optimization to maximize therapeutic benefits while minimizing toxicity.
期刊介绍:
The Journal of Toxicology and Environmental Health, Part A , Current Issues is an authoritative journal that features strictly refereed original research in the field of environmental sciences, public and occupational health, and toxicology.