海岸工程项目的远程监测方法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
C Cabezas-Rabadán, J E Pardo-Pascual, J Palomar-Vázquez, A Cooper
{"title":"海岸工程项目的远程监测方法。","authors":"C Cabezas-Rabadán, J E Pardo-Pascual, J Palomar-Vázquez, A Cooper","doi":"10.1038/s41598-025-86485-y","DOIUrl":null,"url":null,"abstract":"<p><p>High costs and project-based (short-term) financing mean that coastal engineering projects are often undertaken in the absence of appropriate post-construction monitoring programmes. Consequently, the performance of shoreline-stabilizing structures or beach nourishments cannot be properly quantified. Given the high value of beaches and the increase in erosion problems and coastal engineering responses, managers require as much accurate data as possible to support efficient decision-making. This work presents a methodological approach to characterise coastline position changes as a result of engineering actions. We describe a new, low-cost method based on satellite remote sensing to monitor shoreline evolution at high temporal and spatial resolution pre-, during and post-implementation. Initially, satellite-derived waterlines are identified and extracted from publicly available satellite imagery of the Landsat 5, 7, 8, and 9, and Sentinel-2 constellations using the automatic shoreline extraction tool SHOREX. The waterline positions are then compiled, differences over time are quantified, and a matrix is constructed that allows easy depiction and interpretation of spatial and temporal patterns of erosion/accretion. This allows the access and the comprehension of the morphological data by the non-expert. Two examples of application on the Valencian coast of Spain at different spatial scales demonstrate how beach response to coastal engineering actions can be characterised at different levels of detail (from local to regional) and over different periods of time. These applications evidence the utility of the approach as it allows analysis of pre- and post-intervention coastal change and offers a means to overcome the widespread lack of monitoring and hence to improve coastal engineering practice.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2955"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757736/pdf/","citationCount":"0","resultStr":"{\"title\":\"A remote monitoring approach for coastal engineering projects.\",\"authors\":\"C Cabezas-Rabadán, J E Pardo-Pascual, J Palomar-Vázquez, A Cooper\",\"doi\":\"10.1038/s41598-025-86485-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High costs and project-based (short-term) financing mean that coastal engineering projects are often undertaken in the absence of appropriate post-construction monitoring programmes. Consequently, the performance of shoreline-stabilizing structures or beach nourishments cannot be properly quantified. Given the high value of beaches and the increase in erosion problems and coastal engineering responses, managers require as much accurate data as possible to support efficient decision-making. This work presents a methodological approach to characterise coastline position changes as a result of engineering actions. We describe a new, low-cost method based on satellite remote sensing to monitor shoreline evolution at high temporal and spatial resolution pre-, during and post-implementation. Initially, satellite-derived waterlines are identified and extracted from publicly available satellite imagery of the Landsat 5, 7, 8, and 9, and Sentinel-2 constellations using the automatic shoreline extraction tool SHOREX. The waterline positions are then compiled, differences over time are quantified, and a matrix is constructed that allows easy depiction and interpretation of spatial and temporal patterns of erosion/accretion. This allows the access and the comprehension of the morphological data by the non-expert. Two examples of application on the Valencian coast of Spain at different spatial scales demonstrate how beach response to coastal engineering actions can be characterised at different levels of detail (from local to regional) and over different periods of time. These applications evidence the utility of the approach as it allows analysis of pre- and post-intervention coastal change and offers a means to overcome the widespread lack of monitoring and hence to improve coastal engineering practice.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2955\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86485-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86485-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高昂的费用和以项目为基础的(短期)融资意味着沿海工程项目往往是在没有适当的施工后监测方案的情况下进行的。因此,海岸线稳定结构或海滩营养物的性能不能适当地量化。鉴于海滩的高价值以及侵蚀问题和海岸工程响应的增加,管理人员需要尽可能多的准确数据来支持有效的决策。这项工作提出了一种方法学方法来表征海岸线位置的变化作为工程行动的结果。我们描述了一种新的、低成本的基于卫星遥感的方法,在实施前、实施中和实施后以高时空分辨率监测海岸线演变。最初,使用自动海岸线提取工具SHOREX,从Landsat 5、7、8和9以及Sentinel-2星座的公开卫星图像中识别和提取卫星衍生的水线。然后编译水线位置,量化随时间的差异,并构建一个矩阵,可以轻松描述和解释侵蚀/增生的空间和时间模式。这允许非专家访问和理解形态学数据。西班牙巴伦西亚海岸在不同空间尺度上的两个应用实例表明,海滩对海岸工程行动的反应可以在不同的细节水平(从地方到区域)和不同的时期进行表征。这些应用证明了该方法的实用性,因为它允许分析干预前和干预后的海岸变化,并提供了一种克服普遍缺乏监测的方法,从而改善海岸工程实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A remote monitoring approach for coastal engineering projects.

A remote monitoring approach for coastal engineering projects.

A remote monitoring approach for coastal engineering projects.

A remote monitoring approach for coastal engineering projects.

High costs and project-based (short-term) financing mean that coastal engineering projects are often undertaken in the absence of appropriate post-construction monitoring programmes. Consequently, the performance of shoreline-stabilizing structures or beach nourishments cannot be properly quantified. Given the high value of beaches and the increase in erosion problems and coastal engineering responses, managers require as much accurate data as possible to support efficient decision-making. This work presents a methodological approach to characterise coastline position changes as a result of engineering actions. We describe a new, low-cost method based on satellite remote sensing to monitor shoreline evolution at high temporal and spatial resolution pre-, during and post-implementation. Initially, satellite-derived waterlines are identified and extracted from publicly available satellite imagery of the Landsat 5, 7, 8, and 9, and Sentinel-2 constellations using the automatic shoreline extraction tool SHOREX. The waterline positions are then compiled, differences over time are quantified, and a matrix is constructed that allows easy depiction and interpretation of spatial and temporal patterns of erosion/accretion. This allows the access and the comprehension of the morphological data by the non-expert. Two examples of application on the Valencian coast of Spain at different spatial scales demonstrate how beach response to coastal engineering actions can be characterised at different levels of detail (from local to regional) and over different periods of time. These applications evidence the utility of the approach as it allows analysis of pre- and post-intervention coastal change and offers a means to overcome the widespread lack of monitoring and hence to improve coastal engineering practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信