纳武单抗和促红细胞生成素在饮食性肥胖大鼠模型中的药代动力学。

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pharmaceutical Research Pub Date : 2025-02-01 Epub Date: 2025-01-23 DOI:10.1007/s11095-025-03819-1
Yi-Hua Sheng, Celine Park, Yae Eun Chong, Christine Yohn, Anna Siemiątkowska, Katarzyna Kosicka-Noworzyń, Amrit Kaur, Karan Sapra, Luigi Brunetti, Leonid Kagan
{"title":"纳武单抗和促红细胞生成素在饮食性肥胖大鼠模型中的药代动力学。","authors":"Yi-Hua Sheng, Celine Park, Yae Eun Chong, Christine Yohn, Anna Siemiątkowska, Katarzyna Kosicka-Noworzyń, Amrit Kaur, Karan Sapra, Luigi Brunetti, Leonid Kagan","doi":"10.1007/s11095-025-03819-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate how obesity affects the pharmacokinetics of biologics in a rat model.</p><p><strong>Method: </strong>Male Long-Evans rats were fed a high-fat diet from the age of 3 weeks and development of obesity was monitored by measuring body size and composition (fat and lean mass). The animals received nivolumab (1 and 8 mg/kg) or recombinant human erythropoietin (rHuEPO, 1000 IU/kg) by intravenous or subcutaneous injection. Serum samples were collected and analyzed using an enzyme-linked immunosorbent assay (ELISA). Endogenous rat IgG was also measured in the nivolumab study. A standard noncompartmental analysis was performed to calculate pharmacokinetic parameters.</p><p><strong>Results: </strong>When dosed at mg/kg of total body weight approach, no significant differences in pharmacokinetics of nivolumab and rHuEPO between lean and obese cohorts were observed despite significant differences in the body composition. Subcutaneous bioavailability of nivolumab was inversely dependent on the dose level.</p><p><strong>Conclusions: </strong>Pharmacokinetic parameters of two biologics tested in this work were not affected by obesity, and mg/kg dosing approach was necessary to achieve equivalent exposure in serum. The results were different from our previous findings of significant effect of obesity on pharmacokinetics of human IgG in rats. Additional studies with other biologics are urgently needed in preclinical and clinical settings.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"271-280"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880188/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics of Nivolumab and Erythropoietin in a Rat Model of Diet-Induced Obesity.\",\"authors\":\"Yi-Hua Sheng, Celine Park, Yae Eun Chong, Christine Yohn, Anna Siemiątkowska, Katarzyna Kosicka-Noworzyń, Amrit Kaur, Karan Sapra, Luigi Brunetti, Leonid Kagan\",\"doi\":\"10.1007/s11095-025-03819-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To investigate how obesity affects the pharmacokinetics of biologics in a rat model.</p><p><strong>Method: </strong>Male Long-Evans rats were fed a high-fat diet from the age of 3 weeks and development of obesity was monitored by measuring body size and composition (fat and lean mass). The animals received nivolumab (1 and 8 mg/kg) or recombinant human erythropoietin (rHuEPO, 1000 IU/kg) by intravenous or subcutaneous injection. Serum samples were collected and analyzed using an enzyme-linked immunosorbent assay (ELISA). Endogenous rat IgG was also measured in the nivolumab study. A standard noncompartmental analysis was performed to calculate pharmacokinetic parameters.</p><p><strong>Results: </strong>When dosed at mg/kg of total body weight approach, no significant differences in pharmacokinetics of nivolumab and rHuEPO between lean and obese cohorts were observed despite significant differences in the body composition. Subcutaneous bioavailability of nivolumab was inversely dependent on the dose level.</p><p><strong>Conclusions: </strong>Pharmacokinetic parameters of two biologics tested in this work were not affected by obesity, and mg/kg dosing approach was necessary to achieve equivalent exposure in serum. The results were different from our previous findings of significant effect of obesity on pharmacokinetics of human IgG in rats. Additional studies with other biologics are urgently needed in preclinical and clinical settings.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"271-280\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880188/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-025-03819-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03819-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨肥胖对大鼠体内生物制剂药代动力学的影响。方法:雄性Long-Evans大鼠从3周龄开始饲喂高脂饲料,通过测量体大小和组成(脂肪和瘦肉质量)来监测肥胖的发生。动物接受尼伏单抗(1和8 mg/kg)或重组人促红细胞生成素(rHuEPO, 1000 IU/kg)静脉或皮下注射。采集血清样本,采用酶联免疫吸附试验(ELISA)进行分析。在纳武单抗研究中也测量了内源性大鼠IgG。采用标准的非区室分析计算药代动力学参数。结果:当以mg/kg的体重给药时,尽管体成分存在显著差异,但在瘦肉组和肥胖组之间,尼沃单抗和rHuEPO的药代动力学没有显著差异。纳武单抗的皮下生物利用度与剂量水平呈负相关。结论:本研究检测的两种生物制剂的药代动力学参数不受肥胖的影响,必须采用mg/kg的给药方法才能在血清中达到等效暴露。这一结果与我们之前发现的肥胖对人IgG在大鼠体内的药代动力学有显著影响有所不同。迫切需要在临床前和临床环境中对其他生物制剂进行进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacokinetics of Nivolumab and Erythropoietin in a Rat Model of Diet-Induced Obesity.

Purpose: To investigate how obesity affects the pharmacokinetics of biologics in a rat model.

Method: Male Long-Evans rats were fed a high-fat diet from the age of 3 weeks and development of obesity was monitored by measuring body size and composition (fat and lean mass). The animals received nivolumab (1 and 8 mg/kg) or recombinant human erythropoietin (rHuEPO, 1000 IU/kg) by intravenous or subcutaneous injection. Serum samples were collected and analyzed using an enzyme-linked immunosorbent assay (ELISA). Endogenous rat IgG was also measured in the nivolumab study. A standard noncompartmental analysis was performed to calculate pharmacokinetic parameters.

Results: When dosed at mg/kg of total body weight approach, no significant differences in pharmacokinetics of nivolumab and rHuEPO between lean and obese cohorts were observed despite significant differences in the body composition. Subcutaneous bioavailability of nivolumab was inversely dependent on the dose level.

Conclusions: Pharmacokinetic parameters of two biologics tested in this work were not affected by obesity, and mg/kg dosing approach was necessary to achieve equivalent exposure in serum. The results were different from our previous findings of significant effect of obesity on pharmacokinetics of human IgG in rats. Additional studies with other biologics are urgently needed in preclinical and clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信