缓慢进化的蛋白质支持石门(长鞭毛虫)的单一性和长鞭毛虫的海洋起源。

IF 1.9 3区 生物学 Q4 MICROBIOLOGY
Juan J. Ginés-Rivas, Martin Carr
{"title":"缓慢进化的蛋白质支持石门(长鞭毛虫)的单一性和长鞭毛虫的海洋起源。","authors":"Juan J. Ginés-Rivas,&nbsp;Martin Carr","doi":"10.1016/j.protis.2025.126085","DOIUrl":null,"url":null,"abstract":"<div><div>Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid <em>Codosiga hollandica</em> falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of <em>C. hollandica</em>. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.</div></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"176 ","pages":"Article 126085"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slowly evolving proteins support the monophyly of Craspedida (Choanoflagellatea) and a marine origin of choanoflagellates\",\"authors\":\"Juan J. Ginés-Rivas,&nbsp;Martin Carr\",\"doi\":\"10.1016/j.protis.2025.126085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid <em>Codosiga hollandica</em> falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of <em>C. hollandica</em>. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.</div></div>\",\"PeriodicalId\":20781,\"journal\":{\"name\":\"Protist\",\"volume\":\"176 \",\"pages\":\"Article 126085\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S143446102500001X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S143446102500001X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据细胞外被毛(周质)的形态和发育基础,鞭毛类植物已被分类。石门目的种具有纯粹的有机外质体,而棘皮目的分类群具有额外的二氧化硅基外质体,称为lorica。虽然小规模的系统发育研究已经恢复了这两个目的单系性,但最近的系统发育分析已经拒绝了石门的单系性。这些分析表明,淡水石竹属荷兰石竹属最早的支尾鞭毛虫谱系;然而,也有人指出,系统发育学研究结果不一致,不稳定的长分支物种被恢复为基础鞭虫。这里提出了系统发育分析,基于缓慢进化的核糖体蛋白,一致地恢复了石杉的单系和荷兰石杉的衍生位置。在系统发育分析中添加更多的长分支核糖体蛋白会产生更长的末端分支,并削弱对蜈蚣的支持。这些分析强调了在分类群和基因覆盖范围方面增加数据的需求,以成功地解决最早的蔓足类分支。此外,系统发育不稳定的物种被确定,建议从系统发育研究中省略,因为它们有可能破坏恢复的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slowly evolving proteins support the monophyly of Craspedida (Choanoflagellatea) and a marine origin of choanoflagellates
Choanoflagellate species have been taxonomically divided upon the morphological and developmental basis of their extracellular coat (periplast). Species within the order Craspedida possess a purely organic periplast, whereas taxa of the order Acanthoecida have an additional silica based periplast termed the lorica. Whilst small-scale phylogenetic studies have recovered the two orders as monophyletic, recent phylogenomic analyses have rejected the monophyly of the craspedids. These analyses suggest that the freshwater craspedid Codosiga hollandica falls within the earliest branching choanoflagellate lineage; however, it has also been noted that phylogenomic studies result in inconsistent phylogenies, with unstable long-branched species being recovered as basal choanoflagellates. Presented here are phylogenetic analyses, based upon slowly evolving ribosomal proteins, which consistently recover both craspedid monophyly and a derived placement of C. hollandica. The addition of further, long-branched, ribosomal proteins to phylogenetic analyses are shown to generate longer terminal branches and a weakening of the support for Craspedida. The analyses highlight the requirement for an increase in data, in terms of both taxa and gene coverage, to successfully resolve the earliest craspedid branches. In addition, phylogenetically unstable species are identified that are recommended to be omitted from phylogenomic studies as they have the potential to disrupt recovered relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protist
Protist 生物-微生物学
CiteScore
3.60
自引率
4.00%
发文量
43
审稿时长
18.7 weeks
期刊介绍: Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信