MGST1过表达可改善心脏移植后心肌缺血/再灌注损伤时线粒体功能障碍和铁下垂。

IF 8.5 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yang Yang, Changying Zhao, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu
{"title":"MGST1过表达可改善心脏移植后心肌缺血/再灌注损伤时线粒体功能障碍和铁下垂。","authors":"Yang Yang, Changying Zhao, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu","doi":"10.1016/j.ijbiomac.2025.140135","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion. The results showed that MGST1 was significantly down-regulated in the model heart graft tissues, and overexpressing MGST1 effectively alleviated myocardial infarction, inflammation and histological damage of myocardial tissues in the model group. Subsequently, mouse cardiomyocytes HL-1 cells were subjected to oxygen-glucose deprivation/re‑oxygenation (OGD/R) condition, and MGST1 overexpression reduced cell apoptosis and inflammation in OGD/R-induced HL-1 cells. Of note, MGST1 overexpression attenuated I/R-induced mitochondrial damage and inhibited ferroptosis in vitro and in vivo. Moreover, MGST1 was found to be negatively regulated by DNA methyltransferase 1 (DNMT1)-mediated promoter methylation, and DNMT1 silence suppressed OGD/R-induced damage in HL-1 cells through restoring MGST1 expression. Altogether, targeting MGST1 hyper-methylation ameliorates mitochondrial damage and ferroptosis of cardiomyocytes, and prevents myocardial I/R injury following heart transplantation.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140135"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGST1 overexpression ameliorates mitochondrial dysfunction and ferroptosis during myocardial ischemia/reperfusion injury after heart transplantation.\",\"authors\":\"Yang Yang, Changying Zhao, Chenlu Li, Ziwang Lu, Xiantong Cao, Qifei Wu\",\"doi\":\"10.1016/j.ijbiomac.2025.140135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion. The results showed that MGST1 was significantly down-regulated in the model heart graft tissues, and overexpressing MGST1 effectively alleviated myocardial infarction, inflammation and histological damage of myocardial tissues in the model group. Subsequently, mouse cardiomyocytes HL-1 cells were subjected to oxygen-glucose deprivation/re‑oxygenation (OGD/R) condition, and MGST1 overexpression reduced cell apoptosis and inflammation in OGD/R-induced HL-1 cells. Of note, MGST1 overexpression attenuated I/R-induced mitochondrial damage and inhibited ferroptosis in vitro and in vivo. Moreover, MGST1 was found to be negatively regulated by DNA methyltransferase 1 (DNMT1)-mediated promoter methylation, and DNMT1 silence suppressed OGD/R-induced damage in HL-1 cells through restoring MGST1 expression. Altogether, targeting MGST1 hyper-methylation ameliorates mitochondrial damage and ferroptosis of cardiomyocytes, and prevents myocardial I/R injury following heart transplantation.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"140135\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.140135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体功能障碍和铁下垂在心脏移植后心肌缺血/再灌注(I/R)中起重要作用。微体谷胱甘肽转移酶1 (MGST1)广泛分布于线粒体中,对铁凋亡具有保护作用,其在心肌I/R损伤中的作用尚未阐明。本研究将C57BL/6雄性小鼠供体心脏经12 h的离体冷缺血处理后,移植到受体小鼠腹部进行24 h的再灌注。结果显示,MGST1在模型心脏移植组织中显著下调,过表达MGST1可有效减轻模型组心肌梗死、炎症及组织损伤。随后,将小鼠心肌细胞HL-1细胞置于氧糖剥夺/再氧合(OGD/R)条件下,MGST1过表达减少了OGD/R诱导的HL-1细胞的细胞凋亡和炎症。值得注意的是,在体外和体内,MGST1过表达可减轻I/ r诱导的线粒体损伤并抑制铁下垂。此外,MGST1被发现受到DNA甲基转移酶1 (DNMT1)介导的启动子甲基化的负调控,DNMT1沉默通过恢复MGST1的表达来抑制OGD/ r诱导的HL-1细胞损伤。总之,靶向MGST1超甲基化可改善心肌细胞线粒体损伤和铁下垂,并防止心脏移植后心肌I/R损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MGST1 overexpression ameliorates mitochondrial dysfunction and ferroptosis during myocardial ischemia/reperfusion injury after heart transplantation.

Mitochondrial dysfunction and ferroptosis play crucial roles in myocardial ischemia/reperfusion (I/R) following heart transplantation. Microsomal glutathione s transferase 1 (MGST1) is widely distributed in mitochondria and has a protective effect against ferroptosis, and its involvement in myocardial I/R injury has not yet been elucidated. In this study, donor hearts from C57BL/6 male mice were subjected to 12 h of ex-vivo cold ischemia treatment and transplanted into the abdomen of recipient mice for 24 h of reperfusion. The results showed that MGST1 was significantly down-regulated in the model heart graft tissues, and overexpressing MGST1 effectively alleviated myocardial infarction, inflammation and histological damage of myocardial tissues in the model group. Subsequently, mouse cardiomyocytes HL-1 cells were subjected to oxygen-glucose deprivation/re‑oxygenation (OGD/R) condition, and MGST1 overexpression reduced cell apoptosis and inflammation in OGD/R-induced HL-1 cells. Of note, MGST1 overexpression attenuated I/R-induced mitochondrial damage and inhibited ferroptosis in vitro and in vivo. Moreover, MGST1 was found to be negatively regulated by DNA methyltransferase 1 (DNMT1)-mediated promoter methylation, and DNMT1 silence suppressed OGD/R-induced damage in HL-1 cells through restoring MGST1 expression. Altogether, targeting MGST1 hyper-methylation ameliorates mitochondrial damage and ferroptosis of cardiomyocytes, and prevents myocardial I/R injury following heart transplantation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信