Nico J. Guth, Oskar Vallhagen, Per Helander, Istvan Pusztai, Sarah L. Newton, Tünde Fülöp
{"title":"磁约束聚变等离子体中的颗粒火箭效应","authors":"Nico J. Guth, Oskar Vallhagen, Per Helander, Istvan Pusztai, Sarah L. Newton, Tünde Fülöp","doi":"10.1103/physrevlett.134.035101","DOIUrl":null,"url":null,"abstract":"Pellets of frozen material traveling into a magnetically confined fusion plasma are accelerated by the so-called pellet rocket effect. The nonuniform plasma heats the pellet ablation cloud asymmetrically, producing pressure-driven, rocketlike propulsion of the pellet. We present a semianalytical model of this process by perturbing a spherically symmetric ablation model. Predicted pellet accelerations match experimental estimates in current tokamaks (∼</a:mo>10</a:mn></a:mrow>5</a:mn></a:mrow></a:msup></a:mtext></a:mtext>m</a:mi>/</a:mo>s</a:mi></a:mrow>2</a:mn></a:mrow></a:msup></a:mrow></a:math>). Projections for ITER high-confinement scenarios (<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mo>∼</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>6</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi mathvariant=\"normal\">m</e:mi><e:mo>/</e:mo><e:msup><e:mrow><e:mi mathvariant=\"normal\">s</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msup></e:mrow></e:math>) indicate significantly shorter pellet penetration than expected without this effect, which could limit the effectiveness of disruption mitigation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"13 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pellet Rocket Effect in Magnetic Confinement Fusion Plasmas\",\"authors\":\"Nico J. Guth, Oskar Vallhagen, Per Helander, Istvan Pusztai, Sarah L. Newton, Tünde Fülöp\",\"doi\":\"10.1103/physrevlett.134.035101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pellets of frozen material traveling into a magnetically confined fusion plasma are accelerated by the so-called pellet rocket effect. The nonuniform plasma heats the pellet ablation cloud asymmetrically, producing pressure-driven, rocketlike propulsion of the pellet. We present a semianalytical model of this process by perturbing a spherically symmetric ablation model. Predicted pellet accelerations match experimental estimates in current tokamaks (∼</a:mo>10</a:mn></a:mrow>5</a:mn></a:mrow></a:msup></a:mtext></a:mtext>m</a:mi>/</a:mo>s</a:mi></a:mrow>2</a:mn></a:mrow></a:msup></a:mrow></a:math>). Projections for ITER high-confinement scenarios (<e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:mo>∼</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mn>6</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi mathvariant=\\\"normal\\\">m</e:mi><e:mo>/</e:mo><e:msup><e:mrow><e:mi mathvariant=\\\"normal\\\">s</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msup></e:mrow></e:math>) indicate significantly shorter pellet penetration than expected without this effect, which could limit the effectiveness of disruption mitigation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.035101\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.035101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Pellet Rocket Effect in Magnetic Confinement Fusion Plasmas
Pellets of frozen material traveling into a magnetically confined fusion plasma are accelerated by the so-called pellet rocket effect. The nonuniform plasma heats the pellet ablation cloud asymmetrically, producing pressure-driven, rocketlike propulsion of the pellet. We present a semianalytical model of this process by perturbing a spherically symmetric ablation model. Predicted pellet accelerations match experimental estimates in current tokamaks (∼105m/s2). Projections for ITER high-confinement scenarios (∼106m/s2) indicate significantly shorter pellet penetration than expected without this effect, which could limit the effectiveness of disruption mitigation. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks