Michael L. Machala, Xi Chen, Samantha P. Bunke, Gregory Forbes, Akarys Yegizbay, Jacques A. de Chalendar, Inês L. Azevedo, Sally Benson, William A. Tarpeh
{"title":"工业规模锂离子电池回收和采矿供应链的生命周期比较","authors":"Michael L. Machala, Xi Chen, Samantha P. Bunke, Gregory Forbes, Akarys Yegizbay, Jacques A. de Chalendar, Inês L. Azevedo, Sally Benson, William A. Tarpeh","doi":"10.1038/s41467-025-56063-x","DOIUrl":null,"url":null,"abstract":"<p>Recycling lithium-ion batteries (LIBs) can supplement critical materials and improve the environmental sustainability of LIB supply chains. In this work, environmental impacts (greenhouse gas emissions, water consumption, energy consumption) of industrial-scale production of battery-grade cathode materials from end-of-life LIBs are compared to those of conventional mining supply chains. Converting mixed-stream LIBs into battery-grade materials reduces environmental impacts by at least 58%. Recycling batteries to mixed metal products instead of discrete salts further reduces environmental impacts. Electricity consumption is identified as the principal contributor to all LIB recycling environmental impacts, and different electricity sources can change greenhouse gas emissions up to five times. Supply chain steps that precede refinement (material extraction and transport) contribute marginally to the environmental impacts of circular LIB supply chains (<4%), but are more significant in conventional supply chains (30%). This analysis provides insights for advancing sustainable LIB supply chains, and informs optimization of industrial-scale environmental impacts for emerging battery recycling efforts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains\",\"authors\":\"Michael L. Machala, Xi Chen, Samantha P. Bunke, Gregory Forbes, Akarys Yegizbay, Jacques A. de Chalendar, Inês L. Azevedo, Sally Benson, William A. Tarpeh\",\"doi\":\"10.1038/s41467-025-56063-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recycling lithium-ion batteries (LIBs) can supplement critical materials and improve the environmental sustainability of LIB supply chains. In this work, environmental impacts (greenhouse gas emissions, water consumption, energy consumption) of industrial-scale production of battery-grade cathode materials from end-of-life LIBs are compared to those of conventional mining supply chains. Converting mixed-stream LIBs into battery-grade materials reduces environmental impacts by at least 58%. Recycling batteries to mixed metal products instead of discrete salts further reduces environmental impacts. Electricity consumption is identified as the principal contributor to all LIB recycling environmental impacts, and different electricity sources can change greenhouse gas emissions up to five times. Supply chain steps that precede refinement (material extraction and transport) contribute marginally to the environmental impacts of circular LIB supply chains (<4%), but are more significant in conventional supply chains (30%). This analysis provides insights for advancing sustainable LIB supply chains, and informs optimization of industrial-scale environmental impacts for emerging battery recycling efforts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56063-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56063-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains
Recycling lithium-ion batteries (LIBs) can supplement critical materials and improve the environmental sustainability of LIB supply chains. In this work, environmental impacts (greenhouse gas emissions, water consumption, energy consumption) of industrial-scale production of battery-grade cathode materials from end-of-life LIBs are compared to those of conventional mining supply chains. Converting mixed-stream LIBs into battery-grade materials reduces environmental impacts by at least 58%. Recycling batteries to mixed metal products instead of discrete salts further reduces environmental impacts. Electricity consumption is identified as the principal contributor to all LIB recycling environmental impacts, and different electricity sources can change greenhouse gas emissions up to five times. Supply chain steps that precede refinement (material extraction and transport) contribute marginally to the environmental impacts of circular LIB supply chains (<4%), but are more significant in conventional supply chains (30%). This analysis provides insights for advancing sustainable LIB supply chains, and informs optimization of industrial-scale environmental impacts for emerging battery recycling efforts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.