超透明,可拉伸,耐用的电磁波吸收器

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-03-05 DOI:10.1016/j.matt.2024.101956
Runa Zhang , Bin Yuan , Fei Pan , Hongsheng Liang , Haojie Jiang , Hongtao Guo , Yongchao Rao , Shuhuai Zheng , Lingyang Ruan , Changsheng Wu , Yang Yang , Wei Lu
{"title":"超透明,可拉伸,耐用的电磁波吸收器","authors":"Runa Zhang ,&nbsp;Bin Yuan ,&nbsp;Fei Pan ,&nbsp;Hongsheng Liang ,&nbsp;Haojie Jiang ,&nbsp;Hongtao Guo ,&nbsp;Yongchao Rao ,&nbsp;Shuhuai Zheng ,&nbsp;Lingyang Ruan ,&nbsp;Changsheng Wu ,&nbsp;Yang Yang ,&nbsp;Wei Lu","doi":"10.1016/j.matt.2024.101956","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for soft robotics, smart displays, and optoelectronics has driven extensive research into expanding the palette of transparent, stretchable, and durable materials and devices. However, existing electromagnetic wave (EMW) absorbers lack one or more of these key attributes. Herein, we present an EMW absorber that combines ultratransparency (94%), high stretchability (824% fracture strain), and remarkable mechanical and environmental durability. This breakthrough is enabled by a phase-separated terpolymer ionogel. Its effective absorption bandwidth (EAB) of 7.85 GHz in the X and Ku bands significantly outperforms that of all other gel-based materials (&lt;6 GHz) and ranks among the best of all absorbers, whether transparent, stretchable, or neither. This ionogel also demonstrates long-term stability alongside other fascinating properties such as hydrophobicity, skin-like modulus, fatigue and puncture resistance, ability to self-clean, and anti-freezing/icing capabilities. These findings add a key element to the palette, paving the way for next-generation transparent, stretchable devices and ionotronics.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 3","pages":"Article 101956"},"PeriodicalIF":17.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultratransparent, stretchable, and durable electromagnetic wave absorbers\",\"authors\":\"Runa Zhang ,&nbsp;Bin Yuan ,&nbsp;Fei Pan ,&nbsp;Hongsheng Liang ,&nbsp;Haojie Jiang ,&nbsp;Hongtao Guo ,&nbsp;Yongchao Rao ,&nbsp;Shuhuai Zheng ,&nbsp;Lingyang Ruan ,&nbsp;Changsheng Wu ,&nbsp;Yang Yang ,&nbsp;Wei Lu\",\"doi\":\"10.1016/j.matt.2024.101956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing demand for soft robotics, smart displays, and optoelectronics has driven extensive research into expanding the palette of transparent, stretchable, and durable materials and devices. However, existing electromagnetic wave (EMW) absorbers lack one or more of these key attributes. Herein, we present an EMW absorber that combines ultratransparency (94%), high stretchability (824% fracture strain), and remarkable mechanical and environmental durability. This breakthrough is enabled by a phase-separated terpolymer ionogel. Its effective absorption bandwidth (EAB) of 7.85 GHz in the X and Ku bands significantly outperforms that of all other gel-based materials (&lt;6 GHz) and ranks among the best of all absorbers, whether transparent, stretchable, or neither. This ionogel also demonstrates long-term stability alongside other fascinating properties such as hydrophobicity, skin-like modulus, fatigue and puncture resistance, ability to self-clean, and anti-freezing/icing capabilities. These findings add a key element to the palette, paving the way for next-generation transparent, stretchable devices and ionotronics.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 3\",\"pages\":\"Article 101956\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524006490\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524006490","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对软机器人、智能显示器和光电子学日益增长的需求推动了广泛的研究,以扩大透明、可拉伸和耐用材料和设备的调色板。然而,现有的电磁波(EMW)吸收器缺乏这些关键属性中的一个或多个。在此,我们提出了一种EMW吸收剂,它结合了超透明度(94%)、高拉伸性(824%断裂应变)和卓越的机械和环境耐久性。这一突破是由相分离的三元共聚物离子凝胶实现的。它在X和Ku波段的有效吸收带宽(EAB)为7.85 GHz,显著优于所有其他凝胶基材料(< 6ghz),在所有吸收材料中名列前茅,无论是透明的,可拉伸的,还是两者都不是。这种离子凝胶还具有长期稳定性,以及其他令人着迷的特性,如疏水性、皮肤样模量、抗疲劳和抗穿刺、自清洁能力和防冻/结冰能力。这些发现为调色板增加了一个关键元素,为下一代透明、可拉伸设备和离子电子学铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultratransparent, stretchable, and durable electromagnetic wave absorbers

Ultratransparent, stretchable, and durable electromagnetic wave absorbers

Ultratransparent, stretchable, and durable electromagnetic wave absorbers
The growing demand for soft robotics, smart displays, and optoelectronics has driven extensive research into expanding the palette of transparent, stretchable, and durable materials and devices. However, existing electromagnetic wave (EMW) absorbers lack one or more of these key attributes. Herein, we present an EMW absorber that combines ultratransparency (94%), high stretchability (824% fracture strain), and remarkable mechanical and environmental durability. This breakthrough is enabled by a phase-separated terpolymer ionogel. Its effective absorption bandwidth (EAB) of 7.85 GHz in the X and Ku bands significantly outperforms that of all other gel-based materials (<6 GHz) and ranks among the best of all absorbers, whether transparent, stretchable, or neither. This ionogel also demonstrates long-term stability alongside other fascinating properties such as hydrophobicity, skin-like modulus, fatigue and puncture resistance, ability to self-clean, and anti-freezing/icing capabilities. These findings add a key element to the palette, paving the way for next-generation transparent, stretchable devices and ionotronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信