铁电氧化铪锆中的小信号电容:机制和物理见解

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-23 DOI:10.1039/D4NR03700F
Revanth Koduru, Atanu K. Saha, Martin M. Frank and Sumeet K. Gupta
{"title":"铁电氧化铪锆中的小信号电容:机制和物理见解","authors":"Revanth Koduru, Atanu K. Saha, Martin M. Frank and Sumeet K. Gupta","doi":"10.1039/D4NR03700F","DOIUrl":null,"url":null,"abstract":"<p >This study presents a theoretical investigation of the physical mechanisms governing small-signal capacitance in ferroelectrics, focusing on hafnium zirconium oxide (Hf<small><sub>0.5</sub></small>Zr<small><sub>0.5</sub></small>O<small><sub>2</sub></small>, HZO). We utilize a time-dependent Ginzburg–Landau formalism-based 2D multi-grain phase-field framework to simulate the capacitance of metal–ferroelectric–insulator–metal (MFIM) capacitors. Our simulation methodology closely mirrors the experimental procedures for measuring ferroelectric small-signal capacitance, and the outcomes replicate the characteristic butterfly capacitance–voltage behavior. Notably, this behavior can be obtained without invoking traps. We delve into the components of the ferroelectric capacitance associated with the dielectric response and polarization switching, discussing the primary mechanisms – domain bulk response and domain wall response – contributing to the butterfly characteristics. We explore their interplay and relative contributions to the capacitance, correlating them to the polarization switching mechanisms and domain configurations. Additionally, we investigate the impact of increasing domain density with ferroelectric thickness scaling, demonstrating an enhancement in the polarization capacitance component, in addition to the dielectric component. Furthermore, we analyze the contributions of the domain bulk and domain wall responses across ferroelectric thicknesses, relating the capacitive memory window (for memory applications) to the capacitance and revealing a non-monotonic dependence of the maximum memory window on the ferroelectric thickness.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 10","pages":" 6154-6170"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr03700f?page=search","citationCount":"0","resultStr":"{\"title\":\"Small-signal capacitance in ferroelectric hafnium zirconium oxide: mechanisms and physical insights†\",\"authors\":\"Revanth Koduru, Atanu K. Saha, Martin M. Frank and Sumeet K. Gupta\",\"doi\":\"10.1039/D4NR03700F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents a theoretical investigation of the physical mechanisms governing small-signal capacitance in ferroelectrics, focusing on hafnium zirconium oxide (Hf<small><sub>0.5</sub></small>Zr<small><sub>0.5</sub></small>O<small><sub>2</sub></small>, HZO). We utilize a time-dependent Ginzburg–Landau formalism-based 2D multi-grain phase-field framework to simulate the capacitance of metal–ferroelectric–insulator–metal (MFIM) capacitors. Our simulation methodology closely mirrors the experimental procedures for measuring ferroelectric small-signal capacitance, and the outcomes replicate the characteristic butterfly capacitance–voltage behavior. Notably, this behavior can be obtained without invoking traps. We delve into the components of the ferroelectric capacitance associated with the dielectric response and polarization switching, discussing the primary mechanisms – domain bulk response and domain wall response – contributing to the butterfly characteristics. We explore their interplay and relative contributions to the capacitance, correlating them to the polarization switching mechanisms and domain configurations. Additionally, we investigate the impact of increasing domain density with ferroelectric thickness scaling, demonstrating an enhancement in the polarization capacitance component, in addition to the dielectric component. Furthermore, we analyze the contributions of the domain bulk and domain wall responses across ferroelectric thicknesses, relating the capacitive memory window (for memory applications) to the capacitance and revealing a non-monotonic dependence of the maximum memory window on the ferroelectric thickness.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 10\",\"pages\":\" 6154-6170\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr03700f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03700f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03700f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对铁电体中控制小信号电容的物理机制进行了理论研究,重点研究了氧化锆(HZO)。我们利用基于时间相关的金兹堡-朗道形式的二维多晶相场框架来模拟金属-铁电-绝缘体-金属(MFIM)电容器的电容。我们的模拟方法密切反映了测量铁电小信号电容的实验过程,结果复制了特征的蝴蝶电容-电压行为。我们深入研究了与介电响应和极化开关相关的铁电电容的组成部分,讨论了产生蝴蝶特性的主要机制-畴体响应和畴壁响应。我们探讨了它们的相互作用和对电容的相对贡献,并将它们与极化开关机制和畴结构联系起来。此外,我们研究了铁电厚度缩放增加域密度的影响,证明了极化电容成分(除了介电成分)的增强。此外,我们分析了畴体和畴壁响应对铁电厚度的贡献,将电容记忆窗口(用于存储应用)与电容联系起来,并揭示了最大记忆窗口与铁电厚度的非单调依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Small-signal capacitance in ferroelectric hafnium zirconium oxide: mechanisms and physical insights†

Small-signal capacitance in ferroelectric hafnium zirconium oxide: mechanisms and physical insights†

This study presents a theoretical investigation of the physical mechanisms governing small-signal capacitance in ferroelectrics, focusing on hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO). We utilize a time-dependent Ginzburg–Landau formalism-based 2D multi-grain phase-field framework to simulate the capacitance of metal–ferroelectric–insulator–metal (MFIM) capacitors. Our simulation methodology closely mirrors the experimental procedures for measuring ferroelectric small-signal capacitance, and the outcomes replicate the characteristic butterfly capacitance–voltage behavior. Notably, this behavior can be obtained without invoking traps. We delve into the components of the ferroelectric capacitance associated with the dielectric response and polarization switching, discussing the primary mechanisms – domain bulk response and domain wall response – contributing to the butterfly characteristics. We explore their interplay and relative contributions to the capacitance, correlating them to the polarization switching mechanisms and domain configurations. Additionally, we investigate the impact of increasing domain density with ferroelectric thickness scaling, demonstrating an enhancement in the polarization capacitance component, in addition to the dielectric component. Furthermore, we analyze the contributions of the domain bulk and domain wall responses across ferroelectric thicknesses, relating the capacitive memory window (for memory applications) to the capacitance and revealing a non-monotonic dependence of the maximum memory window on the ferroelectric thickness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信