石墨烯边锚定Mn-Ni双原子电催化剂氧还原反应活性和稳定性的DFT研究

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Faizal Helmi , Muhammad Lukmanul Hakim , Ahmad Nuruddin , Nadya Amalia , Sasfan Arman Wella , Hamad AlMohamadi , Adhitya Gandaryus Saputro
{"title":"石墨烯边锚定Mn-Ni双原子电催化剂氧还原反应活性和稳定性的DFT研究","authors":"Faizal Helmi ,&nbsp;Muhammad Lukmanul Hakim ,&nbsp;Ahmad Nuruddin ,&nbsp;Nadya Amalia ,&nbsp;Sasfan Arman Wella ,&nbsp;Hamad AlMohamadi ,&nbsp;Adhitya Gandaryus Saputro","doi":"10.1016/j.apsusc.2025.162495","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the stability and oxygen reduction reaction (ORR) activity of dual-atom catalyst MnNiN<sub>6</sub> active sites on graphene basal planes and graphitic edge sites, utilizing a combination of density functional theory calculations, computational hydrogen electrode approximation, and microkinetic modelling. Our results reveal that graphitic edges enhance the formation and ORR activity of MnNiN<sub>6</sub> active sites. The <em>ortho</em> MnNiN<sub>6</sub> configuration demonstrates thermodynamic stability primarily in high-pH environments, whereas the <em>para</em> MnNiN<sub>6</sub> configuration is stable across a broader pH range, driven by O* and OH* intermediates formation, which poisons the active site at the initial ORR cycle. Moreover, the type of graphitic edge significantly influences ORR performance. Enhanced ORR activity is observed at armchair edges for <em>ortho</em> configurations, while <em>para</em> configurations show improved performance at OH-poisoned zig-zag edge sites.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"689 ","pages":"Article 162495"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study of oxygen reduction reaction activity and stability on Mn-Ni dual-atom electrocatalysts anchored at graphene edges\",\"authors\":\"Faizal Helmi ,&nbsp;Muhammad Lukmanul Hakim ,&nbsp;Ahmad Nuruddin ,&nbsp;Nadya Amalia ,&nbsp;Sasfan Arman Wella ,&nbsp;Hamad AlMohamadi ,&nbsp;Adhitya Gandaryus Saputro\",\"doi\":\"10.1016/j.apsusc.2025.162495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the stability and oxygen reduction reaction (ORR) activity of dual-atom catalyst MnNiN<sub>6</sub> active sites on graphene basal planes and graphitic edge sites, utilizing a combination of density functional theory calculations, computational hydrogen electrode approximation, and microkinetic modelling. Our results reveal that graphitic edges enhance the formation and ORR activity of MnNiN<sub>6</sub> active sites. The <em>ortho</em> MnNiN<sub>6</sub> configuration demonstrates thermodynamic stability primarily in high-pH environments, whereas the <em>para</em> MnNiN<sub>6</sub> configuration is stable across a broader pH range, driven by O* and OH* intermediates formation, which poisons the active site at the initial ORR cycle. Moreover, the type of graphitic edge significantly influences ORR performance. Enhanced ORR activity is observed at armchair edges for <em>ortho</em> configurations, while <em>para</em> configurations show improved performance at OH-poisoned zig-zag edge sites.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"689 \",\"pages\":\"Article 162495\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225002089\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225002089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们利用密度泛函理论计算、计算氢电极近似和微动力学建模相结合的方法,研究了石墨烯基面和石墨烯边缘上双原子催化剂MnNiN6活性位点的稳定性和氧还原反应(ORR)活性。结果表明,石墨边缘增强了MnNiN6活性位点的形成和ORR活性。邻位MnNiN6结构主要在高pH环境中表现出热力学稳定性,而对位MnNiN6结构在更宽的pH范围内都是稳定的,这是由O*和OH*中间体的形成驱动的,它们在初始ORR循环中毒害活性位点。此外,石墨边缘的类型显著影响ORR性能。ORR活性在ortho配置的扶手椅边缘处被增强,而para配置在oh中毒的锯齿形边缘处表现出改善的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DFT study of oxygen reduction reaction activity and stability on Mn-Ni dual-atom electrocatalysts anchored at graphene edges

DFT study of oxygen reduction reaction activity and stability on Mn-Ni dual-atom electrocatalysts anchored at graphene edges

DFT study of oxygen reduction reaction activity and stability on Mn-Ni dual-atom electrocatalysts anchored at graphene edges
In this study, we investigate the stability and oxygen reduction reaction (ORR) activity of dual-atom catalyst MnNiN6 active sites on graphene basal planes and graphitic edge sites, utilizing a combination of density functional theory calculations, computational hydrogen electrode approximation, and microkinetic modelling. Our results reveal that graphitic edges enhance the formation and ORR activity of MnNiN6 active sites. The ortho MnNiN6 configuration demonstrates thermodynamic stability primarily in high-pH environments, whereas the para MnNiN6 configuration is stable across a broader pH range, driven by O* and OH* intermediates formation, which poisons the active site at the initial ORR cycle. Moreover, the type of graphitic edge significantly influences ORR performance. Enhanced ORR activity is observed at armchair edges for ortho configurations, while para configurations show improved performance at OH-poisoned zig-zag edge sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信