植物基因组编辑中蛋白介导的SaCas9分裂

IF 4.9 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in genome editing Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/fgeed.2024.1506468
Danling Hu, Lizhe Hu, Yaqiang Lu, Xiao Dong, Xingyu Cao, Shasha Bai, Lingang Zhang, Dongming Li, Yongwei Sun
{"title":"植物基因组编辑中蛋白介导的SaCas9分裂","authors":"Danling Hu, Lizhe Hu, Yaqiang Lu, Xiao Dong, Xingyu Cao, Shasha Bai, Lingang Zhang, Dongming Li, Yongwei Sun","doi":"10.3389/fgeed.2024.1506468","DOIUrl":null,"url":null,"abstract":"<p><p>Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the <i>SaCas9</i> transcript into two segments (Split-v1) and three segments (Split-v3). The Split-v1 system demonstrated genome editing efficiencies in transgenic plants comparable to those achieved with wild-type SaCas9, with efficiencies ranging from 70.2% to 96.1%. Additionally, we constructed barley stripe mosaic virus (BSMV)-based vectors to co-express Split-v1 SaCas9 and gRNAs targeting <i>LcHRC</i>, <i>LcGW2</i>, and <i>LcTB1</i> in sheepgrass (<i>Leymus chinensis</i>), a Gramineae forage species known for its recalcitrance to genetic transformation. Infected leaves of sheepgrass exhibited genome editing efficiencies ranging from 10.40% to 37.03%. These results demonstrate the potential of intein-mediated split nuclease systems to broaden the applicability of VIGE in challenging plant species.</p>","PeriodicalId":73086,"journal":{"name":"Frontiers in genome editing","volume":"6 ","pages":"1506468"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intein-mediated split <i>Sa</i>Cas9 for genome editing in plants.\",\"authors\":\"Danling Hu, Lizhe Hu, Yaqiang Lu, Xiao Dong, Xingyu Cao, Shasha Bai, Lingang Zhang, Dongming Li, Yongwei Sun\",\"doi\":\"10.3389/fgeed.2024.1506468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the <i>SaCas9</i> transcript into two segments (Split-v1) and three segments (Split-v3). The Split-v1 system demonstrated genome editing efficiencies in transgenic plants comparable to those achieved with wild-type SaCas9, with efficiencies ranging from 70.2% to 96.1%. Additionally, we constructed barley stripe mosaic virus (BSMV)-based vectors to co-express Split-v1 SaCas9 and gRNAs targeting <i>LcHRC</i>, <i>LcGW2</i>, and <i>LcTB1</i> in sheepgrass (<i>Leymus chinensis</i>), a Gramineae forage species known for its recalcitrance to genetic transformation. Infected leaves of sheepgrass exhibited genome editing efficiencies ranging from 10.40% to 37.03%. These results demonstrate the potential of intein-mediated split nuclease systems to broaden the applicability of VIGE in challenging plant species.</p>\",\"PeriodicalId\":73086,\"journal\":{\"name\":\"Frontiers in genome editing\",\"volume\":\"6 \",\"pages\":\"1506468\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in genome editing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fgeed.2024.1506468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in genome editing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fgeed.2024.1506468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

病毒诱导的基因组编辑(VIGE)技术是为了解决严重依赖遗传转化和再生的植物基因组编辑的局限性而开发的。然而,由于常用的基因编辑核酸酶Cas9和Cas12a的大小所带来的挑战,VIGE在植物中的应用受到阻碍。为了克服这一挑战,我们利用内部介导的蛋白剪接将SaCas9转录物分成两个片段(Split-v1)和三个片段(Split-v3)。Split-v1系统在转基因植物中的基因组编辑效率与野生型SaCas9相当,效率在70.2%至96.1%之间。此外,我们构建了基于大麦条纹花叶病毒(BSMV)的载体,在羊草(Leymus chinensis)中共表达splt -v1 SaCas9和靶向LcHRC、LcGW2和LcTB1的grna。羊草是一种禾草科牧草,以其难以遗传转化而着称。受感染的羊草叶片的基因组编辑效率为10.40% ~ 37.03%。这些结果表明,内部介导的分裂核酸酶系统有可能扩大vinge在具有挑战性的植物物种中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intein-mediated split SaCas9 for genome editing in plants.

Virus-induced genome editing (VIGE) technologies have been developed to address the limitations to plant genome editing, which heavily relies on genetic transformation and regeneration. However, the application of VIGE in plants is hampered by the challenge posed by the size of the commonly used gene editing nucleases, Cas9 and Cas12a. To overcome this challenge, we employed intein-mediated protein splicing to divide the SaCas9 transcript into two segments (Split-v1) and three segments (Split-v3). The Split-v1 system demonstrated genome editing efficiencies in transgenic plants comparable to those achieved with wild-type SaCas9, with efficiencies ranging from 70.2% to 96.1%. Additionally, we constructed barley stripe mosaic virus (BSMV)-based vectors to co-express Split-v1 SaCas9 and gRNAs targeting LcHRC, LcGW2, and LcTB1 in sheepgrass (Leymus chinensis), a Gramineae forage species known for its recalcitrance to genetic transformation. Infected leaves of sheepgrass exhibited genome editing efficiencies ranging from 10.40% to 37.03%. These results demonstrate the potential of intein-mediated split nuclease systems to broaden the applicability of VIGE in challenging plant species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信