Shanshan Yang , Yongyang Li , Jinglong Ye , Ling Wang , Mingen Xu
{"title":"利用牺牲材料支撑的三维生物打印和通过体积成像进行纵向打印性评估。","authors":"Shanshan Yang , Yongyang Li , Jinglong Ye , Ling Wang , Mingen Xu","doi":"10.1016/j.bioadv.2025.214188","DOIUrl":null,"url":null,"abstract":"<div><div>In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels. Using label-free, non-invasive, in-situ optical coherence tomography (OCT) imaging, we monitored the dynamic deformation of 3D bioprinted hydrogel scaffolds. We validated sacrificial materials' role in enhancing internal channels and introduced deformation characteristics, lateral pore ratio and pore-specific surface area as new parameters. Results from cell-laden hydrogels show that 3D bioprinting with sacrificial materials achieves high fidelity, minimizing collapse, inter-filament fusion, and enhancing lateral porosity. Furthermore, these promote cell proliferation and cell viability.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214188"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional bioprinting utilizing sacrificial material support and longitudinal printability evaluation through volumetric imaging\",\"authors\":\"Shanshan Yang , Yongyang Li , Jinglong Ye , Ling Wang , Mingen Xu\",\"doi\":\"10.1016/j.bioadv.2025.214188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels. Using label-free, non-invasive, in-situ optical coherence tomography (OCT) imaging, we monitored the dynamic deformation of 3D bioprinted hydrogel scaffolds. We validated sacrificial materials' role in enhancing internal channels and introduced deformation characteristics, lateral pore ratio and pore-specific surface area as new parameters. Results from cell-laden hydrogels show that 3D bioprinting with sacrificial materials achieves high fidelity, minimizing collapse, inter-filament fusion, and enhancing lateral porosity. Furthermore, these promote cell proliferation and cell viability.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"169 \",\"pages\":\"Article 214188\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950825000159\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Three-dimensional bioprinting utilizing sacrificial material support and longitudinal printability evaluation through volumetric imaging
In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels. Using label-free, non-invasive, in-situ optical coherence tomography (OCT) imaging, we monitored the dynamic deformation of 3D bioprinted hydrogel scaffolds. We validated sacrificial materials' role in enhancing internal channels and introduced deformation characteristics, lateral pore ratio and pore-specific surface area as new parameters. Results from cell-laden hydrogels show that 3D bioprinting with sacrificial materials achieves high fidelity, minimizing collapse, inter-filament fusion, and enhancing lateral porosity. Furthermore, these promote cell proliferation and cell viability.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!