双酚A及其类似物的内分泌干扰毒性:在神经免疫环境中的意义。

IF 6.8 Q1 TOXICOLOGY
Erica Buoso, Mirco Masi, Roberta Valeria Limosani, Chiara Oliviero, Sabrina Saeed, Martina Iulini, Francesca Carlotta Passoni, Marco Racchi, Emanuela Corsini
{"title":"双酚A及其类似物的内分泌干扰毒性:在神经免疫环境中的意义。","authors":"Erica Buoso, Mirco Masi, Roberta Valeria Limosani, Chiara Oliviero, Sabrina Saeed, Martina Iulini, Francesca Carlotta Passoni, Marco Racchi, Emanuela Corsini","doi":"10.3390/jox15010013","DOIUrl":null,"url":null,"abstract":"<p><p>Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu.\",\"authors\":\"Erica Buoso, Mirco Masi, Roberta Valeria Limosani, Chiara Oliviero, Sabrina Saeed, Martina Iulini, Francesca Carlotta Passoni, Marco Racchi, Emanuela Corsini\",\"doi\":\"10.3390/jox15010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内分泌干扰化学物质(EDCs)是能够干扰激素系统并改变其生理信号的天然或合成物质。由于EDCs的广泛使用、环境持久性和长期接触的潜在水平,对多种病理状况具有影响,因此已被认为是一个公共卫生问题。据报道,它们的副作用引起了人们对其使用的严重担忧,有必要对其进行严格监管。这就是双酚A (BPA)的例子,这是一种众所周知的EDC,其每日可耐受摄入量(TDI)于2023年由欧洲食品安全局(EFSA)重新评估,免疫系统已被确定为对BPA暴露最敏感的。越来越多的科学证据表明,EDCs可以干扰几种激素受体、途径和相互作用的蛋白质,从而导致复杂的、细胞环境依赖的反应,这种反应可能在组织中有所不同。在这方面,神经元和免疫系统是激素信号的重要靶点,并且现在正在成为内分泌干扰的关键参与者。在这里,我们使用双酚a及其类似物作为EDCs的概念验证,以解决它们对免疫和神经系统的有害影响,并强调免疫-神经内分泌网络(INEN)内复杂的相互关系。最后,我们提出活化C激酶1受体(RACK1)是EDCs的重要靶点和有价值的筛选工具,可以作为我们毒理学模型的中心枢纽来解释双酚介导的INEN不良反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu.

Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信