关系整合训练调节流体智力的额顶叶网络:脑电图微观状态研究。

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Zhidong Wang, Tie Sun, Feng Xiao
{"title":"关系整合训练调节流体智力的额顶叶网络:脑电图微观状态研究。","authors":"Zhidong Wang, Tie Sun, Feng Xiao","doi":"10.1007/s10548-024-01099-3","DOIUrl":null,"url":null,"abstract":"<p><p>Relational integration is a key subcomponent of working memory and a strong predictor of fluid intelligence. Both relational integration and fluid intelligence share a common neural foundation, particularly involving the frontoparietal network. This study utilized a randomized controlled experiment to examine the effect of relational integration training on brain networks using electroencephalogram (EEG) and microstate analysis. Participants were randomly assigned to either a relational integration training group (n = 29) or an active control group (n = 28) for one month. The Sandia matrices task assessed fluid intelligence, while rest-EEG was recorded during pre- and post-tests. Microstate analysis revealed that, for microstate D, the training group demonstrated a significant increase in occurrence and contribution following the intervention compared to the control group. Additionally, microstate D occurrence was negatively correlated with reaction times (RTs). Post-training, the training group showed a lower occurrence and contribution of microstate C compared to the control group. Regarding transfer probability, the training group exhibited a decrease between microstates A and B, and an increase between microstates C and D. In contrast, the control group showed increased transfer probability between microstates A, B, and C, and a decrease between microstate D and other microstates (B and A). These findings indicate that relational integration training influences frontoparietal networks associated with fluid intelligence. The current study suggests that relational integration training is an effective intervention for enhancing fluid intelligence.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"24"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study.\",\"authors\":\"Zhidong Wang, Tie Sun, Feng Xiao\",\"doi\":\"10.1007/s10548-024-01099-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relational integration is a key subcomponent of working memory and a strong predictor of fluid intelligence. Both relational integration and fluid intelligence share a common neural foundation, particularly involving the frontoparietal network. This study utilized a randomized controlled experiment to examine the effect of relational integration training on brain networks using electroencephalogram (EEG) and microstate analysis. Participants were randomly assigned to either a relational integration training group (n = 29) or an active control group (n = 28) for one month. The Sandia matrices task assessed fluid intelligence, while rest-EEG was recorded during pre- and post-tests. Microstate analysis revealed that, for microstate D, the training group demonstrated a significant increase in occurrence and contribution following the intervention compared to the control group. Additionally, microstate D occurrence was negatively correlated with reaction times (RTs). Post-training, the training group showed a lower occurrence and contribution of microstate C compared to the control group. Regarding transfer probability, the training group exhibited a decrease between microstates A and B, and an increase between microstates C and D. In contrast, the control group showed increased transfer probability between microstates A, B, and C, and a decrease between microstate D and other microstates (B and A). These findings indicate that relational integration training influences frontoparietal networks associated with fluid intelligence. The current study suggests that relational integration training is an effective intervention for enhancing fluid intelligence.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 2\",\"pages\":\"24\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01099-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01099-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

关系整合是工作记忆的一个重要组成部分,也是流体智力的一个强有力的预测指标。关系整合和流体智力都有一个共同的神经基础,特别是涉及额顶叶网络。本研究采用随机对照实验,利用脑电图(EEG)和微状态分析来研究关系整合训练对脑网络的影响。参与者被随机分配到关系整合训练组(n = 29)或积极对照组(n = 28),为期一个月。桑迪亚矩阵任务评估流体智力,而在测试前后记录休息-脑电图。微状态分析显示,对于微状态D,与对照组相比,训练组在干预后的发生率和贡献显著增加。此外,微态D的发生与反应时间呈负相关。训练后,与对照组相比,训练组微状态C的发生率和贡献率较低。在迁移概率方面,训练组在微状态a和B之间的迁移概率减小,在微状态C和D之间的迁移概率增大,而对照组在微状态a、B和C之间的迁移概率增大,而在微状态D和其他微状态(B和a)之间的迁移概率减小。这些结果表明,关系整合训练影响了与流体智力相关的额顶叶网络。目前的研究表明,关系整合训练是提高流动智力的有效干预手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relational Integration Training Modulated the Frontoparietal Network for Fluid Intelligence: An EEG Microstates Study.

Relational integration is a key subcomponent of working memory and a strong predictor of fluid intelligence. Both relational integration and fluid intelligence share a common neural foundation, particularly involving the frontoparietal network. This study utilized a randomized controlled experiment to examine the effect of relational integration training on brain networks using electroencephalogram (EEG) and microstate analysis. Participants were randomly assigned to either a relational integration training group (n = 29) or an active control group (n = 28) for one month. The Sandia matrices task assessed fluid intelligence, while rest-EEG was recorded during pre- and post-tests. Microstate analysis revealed that, for microstate D, the training group demonstrated a significant increase in occurrence and contribution following the intervention compared to the control group. Additionally, microstate D occurrence was negatively correlated with reaction times (RTs). Post-training, the training group showed a lower occurrence and contribution of microstate C compared to the control group. Regarding transfer probability, the training group exhibited a decrease between microstates A and B, and an increase between microstates C and D. In contrast, the control group showed increased transfer probability between microstates A, B, and C, and a decrease between microstate D and other microstates (B and A). These findings indicate that relational integration training influences frontoparietal networks associated with fluid intelligence. The current study suggests that relational integration training is an effective intervention for enhancing fluid intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信