Mohammed Ayaz Uddin, J Jefferson Andrew, Imad Barsoum, Shanmugam Kumar, Andreas Schiffer
{"title":"带工字梁的叠合锥体晶格结构的准静动力压缩性能。","authors":"Mohammed Ayaz Uddin, J Jefferson Andrew, Imad Barsoum, Shanmugam Kumar, Andreas Schiffer","doi":"10.1038/s41598-024-84507-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the quasi-static and dynamic compression performance of a newly designed stacked pyramidal lattice (SPL) structure composed of struts that resemble I-beams. These novel lattice structures are 3D-printed considering three different stacking sequences, and their stiffness, strength, and energy absorption properties are experimentally assessed through low-velocity impact (1.54 m/s) and quasi-static compression tests. Additionally, dynamic finite element (FE) simulations are carried out to delve deeper into the collapse mechanisms and failure processes. The findings indicate that the SPLs with I-beam struts outperform conventional SPLs with square struts of same mass showcasing superior rigidity, durability, and energy absorption. Specifically, we report enhancements in strength and energy absorption of 26% and 109% under quasi-static compression and 34% and 74% under low-velocity impact, respectively. The latter enhancements are attributed to the improved transverse bending stiffness of the I-shaped cross-section, resulting in lateral (sideward) buckling of the lattice struts. Both experimental and numerical findings demonstrate that altering the stacking sequence of the SPL can lead to significant improvements in the dynamic compression performance, with enhancements of up to 84% in collapse strength.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2837"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quasi-static and dynamic compression behavior of stacked pyramidal lattice structures with I-beam struts.\",\"authors\":\"Mohammed Ayaz Uddin, J Jefferson Andrew, Imad Barsoum, Shanmugam Kumar, Andreas Schiffer\",\"doi\":\"10.1038/s41598-024-84507-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the quasi-static and dynamic compression performance of a newly designed stacked pyramidal lattice (SPL) structure composed of struts that resemble I-beams. These novel lattice structures are 3D-printed considering three different stacking sequences, and their stiffness, strength, and energy absorption properties are experimentally assessed through low-velocity impact (1.54 m/s) and quasi-static compression tests. Additionally, dynamic finite element (FE) simulations are carried out to delve deeper into the collapse mechanisms and failure processes. The findings indicate that the SPLs with I-beam struts outperform conventional SPLs with square struts of same mass showcasing superior rigidity, durability, and energy absorption. Specifically, we report enhancements in strength and energy absorption of 26% and 109% under quasi-static compression and 34% and 74% under low-velocity impact, respectively. The latter enhancements are attributed to the improved transverse bending stiffness of the I-shaped cross-section, resulting in lateral (sideward) buckling of the lattice struts. Both experimental and numerical findings demonstrate that altering the stacking sequence of the SPL can lead to significant improvements in the dynamic compression performance, with enhancements of up to 84% in collapse strength.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2837\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84507-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84507-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quasi-static and dynamic compression behavior of stacked pyramidal lattice structures with I-beam struts.
This study investigates the quasi-static and dynamic compression performance of a newly designed stacked pyramidal lattice (SPL) structure composed of struts that resemble I-beams. These novel lattice structures are 3D-printed considering three different stacking sequences, and their stiffness, strength, and energy absorption properties are experimentally assessed through low-velocity impact (1.54 m/s) and quasi-static compression tests. Additionally, dynamic finite element (FE) simulations are carried out to delve deeper into the collapse mechanisms and failure processes. The findings indicate that the SPLs with I-beam struts outperform conventional SPLs with square struts of same mass showcasing superior rigidity, durability, and energy absorption. Specifically, we report enhancements in strength and energy absorption of 26% and 109% under quasi-static compression and 34% and 74% under low-velocity impact, respectively. The latter enhancements are attributed to the improved transverse bending stiffness of the I-shaped cross-section, resulting in lateral (sideward) buckling of the lattice struts. Both experimental and numerical findings demonstrate that altering the stacking sequence of the SPL can lead to significant improvements in the dynamic compression performance, with enhancements of up to 84% in collapse strength.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.