{"title":"多尺度卷积与知识精馏相结合的掩膜自编码器人脸美值预测。","authors":"Junying Gan, Junling Xiong","doi":"10.1038/s41598-025-86831-0","DOIUrl":null,"url":null,"abstract":"<p><p>Facial beauty prediction (FBP) is a leading area of research in artificial intelligence. Currently, there is a small amount of labeled data and a large amount of unlabeled data in the FBP database. The features extracted by the model based on supervised training are limited, resulting in low prediction accuracy. Masked autoencoder (MAE) is a self-supervised learning method that outperforms supervised learning methods without relying on large-scale databases. The MAE can improve the feature extraction ability of the model effectively. The multi-scale convolution strategy can expand the receptive field and combine the attention mechanism of the MAE to capture the dependency between distant pixels and acquire shallow and deep image features. Knowledge distillation can take the abundant knowledge from the teacher net to the student net, reduce the number of parameters, and compress the model. In this paper, the MAE of the multi-scale convolution strategy is combined with knowledge distillation for FBP. First, the MAE model with a multi-scale convolution strategy is constructed and used in the teacher net for pretraining. Second, the MAE model is constructed for the student net. Finally, the teacher net performs knowledge distillation, and the student net receives the loss function transmitted from the teacher net for optimization. The experimental results show that the proposed method outperforms other methods on the FBP task, improves FBP accuracy, and can be widely applied in tasks such as image classification.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2784"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Masked autoencoder of multi-scale convolution strategy combined with knowledge distillation for facial beauty prediction.\",\"authors\":\"Junying Gan, Junling Xiong\",\"doi\":\"10.1038/s41598-025-86831-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Facial beauty prediction (FBP) is a leading area of research in artificial intelligence. Currently, there is a small amount of labeled data and a large amount of unlabeled data in the FBP database. The features extracted by the model based on supervised training are limited, resulting in low prediction accuracy. Masked autoencoder (MAE) is a self-supervised learning method that outperforms supervised learning methods without relying on large-scale databases. The MAE can improve the feature extraction ability of the model effectively. The multi-scale convolution strategy can expand the receptive field and combine the attention mechanism of the MAE to capture the dependency between distant pixels and acquire shallow and deep image features. Knowledge distillation can take the abundant knowledge from the teacher net to the student net, reduce the number of parameters, and compress the model. In this paper, the MAE of the multi-scale convolution strategy is combined with knowledge distillation for FBP. First, the MAE model with a multi-scale convolution strategy is constructed and used in the teacher net for pretraining. Second, the MAE model is constructed for the student net. Finally, the teacher net performs knowledge distillation, and the student net receives the loss function transmitted from the teacher net for optimization. The experimental results show that the proposed method outperforms other methods on the FBP task, improves FBP accuracy, and can be widely applied in tasks such as image classification.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2784\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86831-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86831-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Masked autoencoder of multi-scale convolution strategy combined with knowledge distillation for facial beauty prediction.
Facial beauty prediction (FBP) is a leading area of research in artificial intelligence. Currently, there is a small amount of labeled data and a large amount of unlabeled data in the FBP database. The features extracted by the model based on supervised training are limited, resulting in low prediction accuracy. Masked autoencoder (MAE) is a self-supervised learning method that outperforms supervised learning methods without relying on large-scale databases. The MAE can improve the feature extraction ability of the model effectively. The multi-scale convolution strategy can expand the receptive field and combine the attention mechanism of the MAE to capture the dependency between distant pixels and acquire shallow and deep image features. Knowledge distillation can take the abundant knowledge from the teacher net to the student net, reduce the number of parameters, and compress the model. In this paper, the MAE of the multi-scale convolution strategy is combined with knowledge distillation for FBP. First, the MAE model with a multi-scale convolution strategy is constructed and used in the teacher net for pretraining. Second, the MAE model is constructed for the student net. Finally, the teacher net performs knowledge distillation, and the student net receives the loss function transmitted from the teacher net for optimization. The experimental results show that the proposed method outperforms other methods on the FBP task, improves FBP accuracy, and can be widely applied in tasks such as image classification.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.