利用QTL定位和RNA-seq相结合的方法对谷子刚毛进行遗传解剖。

IF 4.4 1区 农林科学 Q1 AGRONOMY
Chuanxing Wang, Shaohua Chai, Shiru Li, Delong Liu, Huibing Han, Yongjiang Wu, Yujie Li, Zhixiu Ma, Liyuan Zhang, Xiaoli Gao, Pu Yang
{"title":"利用QTL定位和RNA-seq相结合的方法对谷子刚毛进行遗传解剖。","authors":"Chuanxing Wang, Shaohua Chai, Shiru Li, Delong Liu, Huibing Han, Yongjiang Wu, Yujie Li, Zhixiu Ma, Liyuan Zhang, Xiaoli Gao, Pu Yang","doi":"10.1007/s00122-025-04820-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties. This study leveraged genetic linkage maps from two populations: the published RYRIL population (Hongjiugu × Yugu 18) with 1420 bins and the newly established YYRIL population (Huangruangu × Yugu 18) with 542 bins. We identified 17 QTLs associated with bristle length, explaining 1.76-47.37% of the phenotypic variation. Among these, 6 were multi-environment QTLs, and 11 were environment-specific QTLs. Notably, qBL-1-1 and qBL-3-2 were detected in both populations, and exhibited epistasis interactions. By analyzing genotypic data from the RYRIL population and its parents, we identified two lines with significant variation in bristle length at the qBL-1-1 locus, designated CM3 (short) and CM4 (long). RNA-seq during the flowering phase identified 1812 differentially expressed genes (DEGs). Thirty-three DEGs were identified within 6 multi-environment QTL regions, and the RNA-seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Within the qBL-1-1 region, Seita.1G325800 is predicted to be a key candidate gene controlling foxtail millet bristle length. These findings provide preliminary insights into the genetic basis of bristle development and lay a foundation for the genetic improvement of foxtail millet bristle length.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"33"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.\",\"authors\":\"Chuanxing Wang, Shaohua Chai, Shiru Li, Delong Liu, Huibing Han, Yongjiang Wu, Yujie Li, Zhixiu Ma, Liyuan Zhang, Xiaoli Gao, Pu Yang\",\"doi\":\"10.1007/s00122-025-04820-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties. This study leveraged genetic linkage maps from two populations: the published RYRIL population (Hongjiugu × Yugu 18) with 1420 bins and the newly established YYRIL population (Huangruangu × Yugu 18) with 542 bins. We identified 17 QTLs associated with bristle length, explaining 1.76-47.37% of the phenotypic variation. Among these, 6 were multi-environment QTLs, and 11 were environment-specific QTLs. Notably, qBL-1-1 and qBL-3-2 were detected in both populations, and exhibited epistasis interactions. By analyzing genotypic data from the RYRIL population and its parents, we identified two lines with significant variation in bristle length at the qBL-1-1 locus, designated CM3 (short) and CM4 (long). RNA-seq during the flowering phase identified 1812 differentially expressed genes (DEGs). Thirty-three DEGs were identified within 6 multi-environment QTL regions, and the RNA-seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Within the qBL-1-1 region, Seita.1G325800 is predicted to be a key candidate gene controlling foxtail millet bristle length. These findings provide preliminary insights into the genetic basis of bristle development and lay a foundation for the genetic improvement of foxtail millet bristle length.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 1\",\"pages\":\"33\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-025-04820-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04820-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:两个RIL群体在不同环境下的QTL定位揭示了猪鬃长度的一致QTL,并结合RNA-seq鉴定了影响猪鬃长度的潜在候选基因。谷子毛在提高产量和防止鸟害方面起着至关重要的作用。然而,目前对谷子刚毛形成的分子调控机制研究有限,制约了谷子新品种的遗传改良和选育。本研究利用了两个群体的遗传连锁图谱:已发表的RYRIL群体(红九谷×玉谷18)的1420个箱位和新建立的YYRIL群体(黄光谷×玉谷18)的542个箱位。我们鉴定出17个与刚毛长度相关的qtl,解释了1.76-47.37%的表型变异。其中6个为多环境qtl, 11个为环境特异性qtl。值得注意的是,qBL-1-1和qBL-3-2在两个种群中均检测到,并表现出上位相互作用。通过分析RYRIL群体及其亲本的基因型数据,我们在qBL-1-1位点上发现了2个刚毛长度变异显著的品系,分别为CM3(短)和CM4(长)。花期RNA-seq鉴定出1812个差异表达基因(DEGs)。在6个多环境QTL区域中鉴定出33个deg,并通过定量逆转录聚合酶链反应(qRT-PCR)对RNA-seq结果进行验证。在qBL-1-1区域内,Seita.1G325800被预测为控制谷子刚毛长度的关键候选基因。这些研究结果初步揭示了毛发育的遗传基础,为谷子毛长度的遗传改良奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.

Key message: QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties. This study leveraged genetic linkage maps from two populations: the published RYRIL population (Hongjiugu × Yugu 18) with 1420 bins and the newly established YYRIL population (Huangruangu × Yugu 18) with 542 bins. We identified 17 QTLs associated with bristle length, explaining 1.76-47.37% of the phenotypic variation. Among these, 6 were multi-environment QTLs, and 11 were environment-specific QTLs. Notably, qBL-1-1 and qBL-3-2 were detected in both populations, and exhibited epistasis interactions. By analyzing genotypic data from the RYRIL population and its parents, we identified two lines with significant variation in bristle length at the qBL-1-1 locus, designated CM3 (short) and CM4 (long). RNA-seq during the flowering phase identified 1812 differentially expressed genes (DEGs). Thirty-three DEGs were identified within 6 multi-environment QTL regions, and the RNA-seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Within the qBL-1-1 region, Seita.1G325800 is predicted to be a key candidate gene controlling foxtail millet bristle length. These findings provide preliminary insights into the genetic basis of bristle development and lay a foundation for the genetic improvement of foxtail millet bristle length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信