Haidong Liang, Tian Gu, Yanchao Lou, Chengyuan Yang, Chaojie Ma, Jiajie Qi, Andrew A. Bettiol, Xilin Wang
{"title":"菱面体氮化硼中可调谐偏振纠缠光子对源。","authors":"Haidong Liang, Tian Gu, Yanchao Lou, Chengyuan Yang, Chaojie Ma, Jiajie Qi, Andrew A. Bettiol, Xilin Wang","doi":"10.1126/sciadv.adt3710","DOIUrl":null,"url":null,"abstract":"<div >Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources. However, the photon-pair generation rate and purity are relatively low, and the strong photoluminescence in 2D semiconductors also makes the operational wavelength range limited. Here, we use the spontaneous parametric down conversion (SPDC) of rhombohedral boron nitride (rBN) as a polarization entangled photon-pair source. We have achieved a generation rate of more than 120 hertz (a record-high SPDC coincidence rate with 2D materials) and a high-purity photon-pair generation with a coincidence-to-accidental ratio of above 200. Tunable Bell state generation is also demonstrated by simply rotating the pump polarization, with a fidelity up to 0.93. Our results suggest rBN as an ideal candidate for on-chip integrated quantum devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 4","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tunable polarization entangled photon-pair source in rhombohedral boron nitride\",\"authors\":\"Haidong Liang, Tian Gu, Yanchao Lou, Chengyuan Yang, Chaojie Ma, Jiajie Qi, Andrew A. Bettiol, Xilin Wang\",\"doi\":\"10.1126/sciadv.adt3710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources. However, the photon-pair generation rate and purity are relatively low, and the strong photoluminescence in 2D semiconductors also makes the operational wavelength range limited. Here, we use the spontaneous parametric down conversion (SPDC) of rhombohedral boron nitride (rBN) as a polarization entangled photon-pair source. We have achieved a generation rate of more than 120 hertz (a record-high SPDC coincidence rate with 2D materials) and a high-purity photon-pair generation with a coincidence-to-accidental ratio of above 200. Tunable Bell state generation is also demonstrated by simply rotating the pump polarization, with a fidelity up to 0.93. Our results suggest rBN as an ideal candidate for on-chip integrated quantum devices.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt3710\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt3710","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tunable polarization entangled photon-pair source in rhombohedral boron nitride
Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources. However, the photon-pair generation rate and purity are relatively low, and the strong photoluminescence in 2D semiconductors also makes the operational wavelength range limited. Here, we use the spontaneous parametric down conversion (SPDC) of rhombohedral boron nitride (rBN) as a polarization entangled photon-pair source. We have achieved a generation rate of more than 120 hertz (a record-high SPDC coincidence rate with 2D materials) and a high-purity photon-pair generation with a coincidence-to-accidental ratio of above 200. Tunable Bell state generation is also demonstrated by simply rotating the pump polarization, with a fidelity up to 0.93. Our results suggest rBN as an ideal candidate for on-chip integrated quantum devices.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.