{"title":"需求不确定性和可持续发展条件下应急服务设施配置问题的两阶段鲁棒优化模型。","authors":"Hongyan Li, Dongmei Yu, Yiming Zhang, Yifei Yuan","doi":"10.1038/s41598-025-86129-1","DOIUrl":null,"url":null,"abstract":"<p><p>Under the backdrop of frequent emergencies, the rational layout of emergency service facilities (ESF) and the effective allocation of emergency supplies have emerged as crucial in determining the timeliness of post-disaster response. By adequately accounting for potential uncertainties and carrying out comprehensive pre-planning, the robustness of location-allocation decisions can be significantly improved. This paper delves into the ESF network design problem under demand uncertainty and formulates this problem as a two-stage robust optimization model. The presented model defines a generalized budget uncertainty set to capture victims' uncertain demand and minimizes the sum of the costs involved in the two stages. The objective function integrates the input cost in the preparedness phase, the deprivation cost from the victims' perspective and the environmental impact cost responding to sustainable development in the response phase, which respectively correspond to the comprehensive optimization of the deployment of ESF, the distribution of emergency supplies and the implementation of sustainable measures. Subsequently, we employ the column and constraint generation (C&CG) algorithm to solve the proposed model and take the COVID-19 epidemic in Wuhan as a case to verify the effectiveness of the model and algorithm. Finally, we examine the influence of demand uncertainty and environmental impact cost on the optimal solution, yielding valuable managerial insights.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2895"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754587/pdf/","citationCount":"0","resultStr":"{\"title\":\"A two-stage robust optimization model for emergency service facilities location-allocation problem under demand uncertainty and sustainable development.\",\"authors\":\"Hongyan Li, Dongmei Yu, Yiming Zhang, Yifei Yuan\",\"doi\":\"10.1038/s41598-025-86129-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under the backdrop of frequent emergencies, the rational layout of emergency service facilities (ESF) and the effective allocation of emergency supplies have emerged as crucial in determining the timeliness of post-disaster response. By adequately accounting for potential uncertainties and carrying out comprehensive pre-planning, the robustness of location-allocation decisions can be significantly improved. This paper delves into the ESF network design problem under demand uncertainty and formulates this problem as a two-stage robust optimization model. The presented model defines a generalized budget uncertainty set to capture victims' uncertain demand and minimizes the sum of the costs involved in the two stages. The objective function integrates the input cost in the preparedness phase, the deprivation cost from the victims' perspective and the environmental impact cost responding to sustainable development in the response phase, which respectively correspond to the comprehensive optimization of the deployment of ESF, the distribution of emergency supplies and the implementation of sustainable measures. Subsequently, we employ the column and constraint generation (C&CG) algorithm to solve the proposed model and take the COVID-19 epidemic in Wuhan as a case to verify the effectiveness of the model and algorithm. Finally, we examine the influence of demand uncertainty and environmental impact cost on the optimal solution, yielding valuable managerial insights.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2895\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86129-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86129-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A two-stage robust optimization model for emergency service facilities location-allocation problem under demand uncertainty and sustainable development.
Under the backdrop of frequent emergencies, the rational layout of emergency service facilities (ESF) and the effective allocation of emergency supplies have emerged as crucial in determining the timeliness of post-disaster response. By adequately accounting for potential uncertainties and carrying out comprehensive pre-planning, the robustness of location-allocation decisions can be significantly improved. This paper delves into the ESF network design problem under demand uncertainty and formulates this problem as a two-stage robust optimization model. The presented model defines a generalized budget uncertainty set to capture victims' uncertain demand and minimizes the sum of the costs involved in the two stages. The objective function integrates the input cost in the preparedness phase, the deprivation cost from the victims' perspective and the environmental impact cost responding to sustainable development in the response phase, which respectively correspond to the comprehensive optimization of the deployment of ESF, the distribution of emergency supplies and the implementation of sustainable measures. Subsequently, we employ the column and constraint generation (C&CG) algorithm to solve the proposed model and take the COVID-19 epidemic in Wuhan as a case to verify the effectiveness of the model and algorithm. Finally, we examine the influence of demand uncertainty and environmental impact cost on the optimal solution, yielding valuable managerial insights.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.