基于多专家联合信念规则库的复杂系统健康状态评估方法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shuozi Li, Mingyuan Liu, Ning Ma, Wei He
{"title":"基于多专家联合信念规则库的复杂系统健康状态评估方法。","authors":"Shuozi Li, Mingyuan Liu, Ning Ma, Wei He","doi":"10.1038/s41598-025-85792-8","DOIUrl":null,"url":null,"abstract":"<p><p>The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2852"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Health state assessment method for complex system based on multiexpert joint belief rule base.\",\"authors\":\"Shuozi Li, Mingyuan Liu, Ning Ma, Wei He\",\"doi\":\"10.1038/s41598-025-85792-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2852\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85792-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85792-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

复杂系统的健康状况随着它们长时间的运行而持续下降,因此评估复杂系统的健康状态非常重要。信念规则库(BRB)作为一种能够有效解决不确定性和具有可解释性的半定量方法,广泛应用于复杂系统健康状态评估领域。在实际工程中,BRB还存在专家知识不完备、专家认知能力不一致等问题,影响了模型的构建和可解释性。针对这一问题,提出了一种基于联合多专家信念规则库(BRB-ME)的复杂系统健康状态评估方法。首先,针对不同专家模型的融合,设计了一种新的多专家知识融合算法。ER被用作模型的推理机。其次,采用多专家知识约束的多种群进化鲸鱼优化算法(C-MEWOA)对BRB-ME模型进行优化。最后,通过锂离子电池和飞轮的案例研究,验证了BRB-ME模型在健康状态评估中的有效性。对比研究表明,BRB-ME模型能够融合多专家知识,在评估结果的稳定性和准确性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Health state assessment method for complex system based on multiexpert joint belief rule base.

Health state assessment method for complex system based on multiexpert joint belief rule base.

Health state assessment method for complex system based on multiexpert joint belief rule base.

Health state assessment method for complex system based on multiexpert joint belief rule base.

The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信