{"title":"基于多专家联合信念规则库的复杂系统健康状态评估方法。","authors":"Shuozi Li, Mingyuan Liu, Ning Ma, Wei He","doi":"10.1038/s41598-025-85792-8","DOIUrl":null,"url":null,"abstract":"<p><p>The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2852"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Health state assessment method for complex system based on multiexpert joint belief rule base.\",\"authors\":\"Shuozi Li, Mingyuan Liu, Ning Ma, Wei He\",\"doi\":\"10.1038/s41598-025-85792-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"2852\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85792-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85792-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Health state assessment method for complex system based on multiexpert joint belief rule base.
The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability. To address this problem, a complex system health state assessment method is proposed based on a joint multiexpert belief rule base (BRB-ME). Experts first build their own models, and a new multiexpert knowledge fusion algorithm is designed for the fusion of different expert models. The ER is used as the inference machine for the model. Next, a multi-population evolution whale optimization algorithm with multiexpert knowledge constraints (C-MEWOA) is used to optimize the BRB-ME model. Finally, the effectiveness of the BRB-ME model in health state assessment is verified through case studies of lithium-ion batteries and flywheels. Comparative studies have shown that the BRB-ME model can fuse multiexpert knowledge and has advantages in terms of the stability and accuracy of assessment results.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.