Beibei Yang, Yao Guo, Lilong Liu, Ting Huang, Bo Zhao, Wanyu Bai, Guigen Zhang, Chengming Zhu, Junchao Dong
{"title":"只有limm结构域的蛋白LMO2和它的结合伙伴LDB1在类开关重组中是不同的。","authors":"Beibei Yang, Yao Guo, Lilong Liu, Ting Huang, Bo Zhao, Wanyu Bai, Guigen Zhang, Chengming Zhu, Junchao Dong","doi":"10.1073/pnas.2412376122","DOIUrl":null,"url":null,"abstract":"<p><p>The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection. Although LDB1 stabilizes LMO2 proteins, it is not required for end joining but functions as a positive regulator of AID transcription independent of LMO2, and this function of LDB1 requires its dimerization domain. Moreover, LDB1 directly binds to and promotes the looping of the AID promoter to upstream enhancers through dimerization. Our study revealed the mechanistically separated roles of LMO2 and LDB1 in different steps of CSR for antibody diversification.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 4","pages":"e2412376122"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789033/pdf/","citationCount":"0","resultStr":"{\"title\":\"The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.\",\"authors\":\"Beibei Yang, Yao Guo, Lilong Liu, Ting Huang, Bo Zhao, Wanyu Bai, Guigen Zhang, Chengming Zhu, Junchao Dong\",\"doi\":\"10.1073/pnas.2412376122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection. Although LDB1 stabilizes LMO2 proteins, it is not required for end joining but functions as a positive regulator of AID transcription independent of LMO2, and this function of LDB1 requires its dimerization domain. Moreover, LDB1 directly binds to and promotes the looping of the AID promoter to upstream enhancers through dimerization. Our study revealed the mechanistically separated roles of LMO2 and LDB1 in different steps of CSR for antibody diversification.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 4\",\"pages\":\"e2412376122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2412376122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412376122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The LIM-domain-only protein LMO2 and its binding partner LDB1 are differentially required for class switch recombination.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection. Although LDB1 stabilizes LMO2 proteins, it is not required for end joining but functions as a positive regulator of AID transcription independent of LMO2, and this function of LDB1 requires its dimerization domain. Moreover, LDB1 directly binds to and promotes the looping of the AID promoter to upstream enhancers through dimerization. Our study revealed the mechanistically separated roles of LMO2 and LDB1 in different steps of CSR for antibody diversification.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.