7 T下场1H MRS定量人脑NAD+ T1和T2弛豫时间。

IF 2.7 4区 医学 Q2 BIOPHYSICS
Sophia Swago, Neil E Wilson, Mark A Elliott, Ravi Prakash Reddy Nanga, Ravinder Reddy, Walter R Witschey
{"title":"7 T下场1H MRS定量人脑NAD+ T1和T2弛豫时间。","authors":"Sophia Swago, Neil E Wilson, Mark A Elliott, Ravi Prakash Reddy Nanga, Ravinder Reddy, Walter R Witschey","doi":"10.1002/nbm.5324","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to measure T<sub>1</sub> and T<sub>2</sub> relaxation times of NAD<sup>+</sup> proton resonances in the downfield <sup>1</sup>H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD<sup>+</sup> quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T<sub>2</sub> relaxation times, and saturation recovery data were acquired to measure T<sub>1</sub> relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.1 ppm with a bandwidth of 2 ppm, followed by a 180° spatially selective Shinnar-Le Roux refocusing pulse for localization. Uncertainty propagation analysis on metabolite quantification was performed analytically and with Monte Carlo simulation. [NAD<sup>+</sup>] was quantified in five participants. The mean ± standard deviation of T<sub>1</sub> relaxation times of the H2, H6, and H4 NAD<sup>+</sup> protons were 205.6 ± 25.7, 211.6 ± 33.5, and 237.3 ± 42.4 ms, respectively. The mean ± standard deviation of T<sub>2</sub> relaxation times of the H2, H6, and H4 protons were 33.6 ± 7.4, 29.1 ± 4.7, and 42.3 ± 11.6 ms, respectively. The relative uncertainty in NAD<sup>+</sup> concentration due to relaxation time uncertainty was 8.4%-11.4%, and measured brain [NAD<sup>+</sup>] (N = 5) was 0.324 ± 0.050 mM. Using downfield spectrally selective spectroscopy with single-slice localization, we found T<sub>1</sub> and T<sub>2</sub> relaxation times averaged across all NAD<sup>+</sup> resonances to be approximately 218 and 35 ms, respectively, in the human brain in vivo at 7 T.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e5324"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of NAD<sup>+</sup> T<sub>1</sub> and T<sub>2</sub> Relaxation Times Using Downfield <sup>1</sup>H MRS at 7 T in Human Brain In Vivo.\",\"authors\":\"Sophia Swago, Neil E Wilson, Mark A Elliott, Ravi Prakash Reddy Nanga, Ravinder Reddy, Walter R Witschey\",\"doi\":\"10.1002/nbm.5324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to measure T<sub>1</sub> and T<sub>2</sub> relaxation times of NAD<sup>+</sup> proton resonances in the downfield <sup>1</sup>H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD<sup>+</sup> quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T<sub>2</sub> relaxation times, and saturation recovery data were acquired to measure T<sub>1</sub> relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.1 ppm with a bandwidth of 2 ppm, followed by a 180° spatially selective Shinnar-Le Roux refocusing pulse for localization. Uncertainty propagation analysis on metabolite quantification was performed analytically and with Monte Carlo simulation. [NAD<sup>+</sup>] was quantified in five participants. The mean ± standard deviation of T<sub>1</sub> relaxation times of the H2, H6, and H4 NAD<sup>+</sup> protons were 205.6 ± 25.7, 211.6 ± 33.5, and 237.3 ± 42.4 ms, respectively. The mean ± standard deviation of T<sub>2</sub> relaxation times of the H2, H6, and H4 protons were 33.6 ± 7.4, 29.1 ± 4.7, and 42.3 ± 11.6 ms, respectively. The relative uncertainty in NAD<sup>+</sup> concentration due to relaxation time uncertainty was 8.4%-11.4%, and measured brain [NAD<sup>+</sup>] (N = 5) was 0.324 ± 0.050 mM. Using downfield spectrally selective spectroscopy with single-slice localization, we found T<sub>1</sub> and T<sub>2</sub> relaxation times averaged across all NAD<sup>+</sup> resonances to be approximately 218 and 35 ms, respectively, in the human brain in vivo at 7 T.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\"38 3\",\"pages\":\"e5324\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是在体内测量7t时人脑下场1H MRS谱中NAD+质子共振的T1和T2弛豫时间,并评估弛豫时间不确定性在NAD+定量中的传播。获取8名健康志愿者多次回波的下场光谱以测量T2弛豫时间,获取饱和恢复数据以测量T1弛豫时间。下场采集采用频谱选择性90°正弦脉冲进行激励,激励中心为9.1 ppm,带宽为2 ppm,然后使用180°空间选择性Shinnar-Le Roux重聚焦脉冲进行定位。对代谢物定量进行了不确定性传播分析和蒙特卡罗模拟。对5名受试者的[NAD+]进行量化。H2、H6和H4 NAD+质子T1弛豫时间的平均值±标准差分别为205.6±25.7、211.6±33.5和237.3±42.4 ms。H2、H6和H4质子T2弛豫时间的平均值±标准差分别为33.6±7.4、29.1±4.7和42.3±11.6 ms。弛豫时间不确定度对NAD+浓度的相对不确定度为8.4% ~ 11.4%,测得脑[NAD+] (N = 5)为0.324±0.050 mM。使用单片定位的下场光谱选择光谱,我们发现在人体大脑中,所有NAD+共振的T1和T2弛豫时间平均分别约为218和35 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of NAD+ T1 and T2 Relaxation Times Using Downfield 1H MRS at 7 T in Human Brain In Vivo.

The purpose of this study was to measure T1 and T2 relaxation times of NAD+ proton resonances in the downfield 1H MRS spectrum in human brain at 7 T in vivo and to assess the propagation of relaxation time uncertainty in NAD+ quantification. Downfield spectra from eight healthy volunteers were acquired at multiple echo times to measure T2 relaxation times, and saturation recovery data were acquired to measure T1 relaxation times. The downfield acquisition used a spectrally selective 90° sinc pulse for excitation centered at 9.1 ppm with a bandwidth of 2 ppm, followed by a 180° spatially selective Shinnar-Le Roux refocusing pulse for localization. Uncertainty propagation analysis on metabolite quantification was performed analytically and with Monte Carlo simulation. [NAD+] was quantified in five participants. The mean ± standard deviation of T1 relaxation times of the H2, H6, and H4 NAD+ protons were 205.6 ± 25.7, 211.6 ± 33.5, and 237.3 ± 42.4 ms, respectively. The mean ± standard deviation of T2 relaxation times of the H2, H6, and H4 protons were 33.6 ± 7.4, 29.1 ± 4.7, and 42.3 ± 11.6 ms, respectively. The relative uncertainty in NAD+ concentration due to relaxation time uncertainty was 8.4%-11.4%, and measured brain [NAD+] (N = 5) was 0.324 ± 0.050 mM. Using downfield spectrally selective spectroscopy with single-slice localization, we found T1 and T2 relaxation times averaged across all NAD+ resonances to be approximately 218 and 35 ms, respectively, in the human brain in vivo at 7 T.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信