通过跨尺度模式耦合到纳米力学共振的WSe2膜中太赫兹原子晶格振动的动态调谐

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Bo Xu, Zejuan Zhang, Jiaze Qin, Jiaqi Wu, Luming Wang, Jiankai Zhu, Chenyin Jiao, Wanli Zhang, Juan Xia, Zenghui Wang
{"title":"通过跨尺度模式耦合到纳米力学共振的WSe2膜中太赫兹原子晶格振动的动态调谐","authors":"Bo Xu, Zejuan Zhang, Jiaze Qin, Jiaqi Wu, Luming Wang, Jiankai Zhu, Chenyin Jiao, Wanli Zhang, Juan Xia, Zenghui Wang","doi":"10.1038/s41378-024-00827-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe<sub>2</sub>), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe<sub>2</sub> NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe<sub>2</sub> NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"18"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe<sub>2</sub> membranes.\",\"authors\":\"Bo Xu, Zejuan Zhang, Jiaze Qin, Jiaqi Wu, Luming Wang, Jiankai Zhu, Chenyin Jiao, Wanli Zhang, Juan Xia, Zenghui Wang\",\"doi\":\"10.1038/s41378-024-00827-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe<sub>2</sub>), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe<sub>2</sub> NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe<sub>2</sub> NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"18\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00827-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00827-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

基于原子薄二硒化钨(WSe2)的纳米机电系统(NEMS)得益于其优异的材料性能和力学自由度,为研究和开发二维(2D)晶体的动态应变工程和跨尺度振动耦合提供了理想的平台。然而,对于WSe2 NEMS来说,这样的机会在很大程度上仍未被探索,阻碍了对精致物理过程的探索和新设备功能的实现。在这里,我们证明了原子晶格振动和纳米力学共振之间的动态耦合在少层WSe2 NEMS中。利用定制的能够同时检测拉曼和运动信号的装置,我们实现了太赫兹晶体声子和MHz结构振动之间的跨尺度模式耦合,实现了原子晶格模式的GHz频率调谐,动态规范因子为61.9,是迄今为止报道的所有二维晶体中最好的。我们的研究结果表明,这种二维NEMS为探索原子薄半导体的跨尺度物理提供了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe2 membranes.

Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe2), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe2 NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe2 NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信