通过Scout加速运动估计和还原框架与常规t1加权MRI在1.5 T脑成像中的3D运动校正的临床评价。

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman
{"title":"通过Scout加速运动估计和还原框架与常规t1加权MRI在1.5 T脑成像中的3D运动校正的临床评价。","authors":"Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman","doi":"10.1097/RLI.0000000000001156","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.</p><p><strong>Materials and methods: </strong>A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.</p><p><strong>Results: </strong>Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.</p><p><strong>Conclusions: </strong>The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Evaluation of 3D Motion-Correction Via Scout Accelerated Motion Estimation and Reduction Framework Versus Conventional T1-Weighted MRI at 1.5 T in Brain Imaging.\",\"authors\":\"Laura S Leukert, Katya Hoffmannbeck Heitkötter, Andrea Kronfeld, Roman H Paul, Daniel Polak, Daniel Nicolas Splitthoff, Marc A Brockmann, Sebastian Altmann, Ahmed E Othman\",\"doi\":\"10.1097/RLI.0000000000001156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.</p><p><strong>Materials and methods: </strong>A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.</p><p><strong>Results: </strong>Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.</p><p><strong>Conclusions: </strong>The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.</p>\",\"PeriodicalId\":14486,\"journal\":{\"name\":\"Investigative Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RLI.0000000000001156\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001156","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是研究使用Scout加速运动估计和减少(SAMER)框架进行3D运动校正的脑磁共振成像(MRI) t1加权成像与1.5 T时传统t1加权成像相比,运动伪影的发生和图像质量。材料和方法:一项涉及14名健康志愿者的初步研究评估了在3t MRI扫描期间SAMER框架对诱导运动的影响。参与者进行了三种不同的运动模式:(1)上升,(2)控制呼吸,(3)自由运动。患者研究包括82名需要临床指示的MRI扫描的患者。在1.5 t时获得3D t1加权图像(MPRAGE), MRI数据使用常规积重建(non-Moco)或3D运动校正SAMER框架(SAMER Moco)重建,得到145个图像序列。对于初步研究和患者研究,3名经验丰富的放射科医生使用5点李克特量表评估图像数据,重点是整体图像质量、伪影存在、诊断信心、病理描述和图像清晰度。使用Gwet的AC2评估评估间一致性,并进行探索性分析(non-Moco vs SAMER Moco)。结果:与非Moco相比,初步研究显示SAMER Moco在所有成像参数和运动模式上都有显著改善(P < 0.001)。在伪影自由度和整体图像质量方面,SAMER Moco的优势比为bb0 999.999 (P < 0.0001)。SAMER Moco对工件自由度的优秀或良好评价为52.4%,而非Moco为21.4%。同样,66.7%的SAMER Moco图像在整体图像质量方面被评为优秀或良好,而非Moco图像被评为21.4%。多读卡器在所有参数上的一致性都很好。患者研究证实,SAMER Moco在所有评估的成像参数中提供了显著优越的图像质量,特别是在存在运动的情况下(P < 0.001)。95.1%的SAMER Moco病例的诊断置信度被评为优秀或良好,而非Moco病例的诊断置信度为78.1%。同样,89.8%的SAMER Moco病例的整体图像质量被评为优秀或良好,而非Moco病例的这一比例为65.9%。诊断置信度和整体图像质量的比值比分别为6.698和6.030,均有利于SAMER Moco (P < 0.0001)。多读卡器在所有参数上的一致性都很好。结论:SAMER在t1加权成像数据集中的应用在临床常规中是可行的,通过有效减少运动伪影,显著提高1.5 T脑MRI的图像质量和诊断可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical Evaluation of 3D Motion-Correction Via Scout Accelerated Motion Estimation and Reduction Framework Versus Conventional T1-Weighted MRI at 1.5 T in Brain Imaging.

Objectives: The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.

Materials and methods: A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans. Participants performed 3 different motion patterns: (1) step up, (2) controlled breathing, and (3) free motion. The patient study included 82 patients who required clinically indicated MRI scans. 3D T1-weighted images (MPRAGE) were acquired at 1.5 T. The MRI data were reconstructed using either regular product reconstruction (non-Moco) or the 3D motion correction SAMER framework (SAMER Moco), resulting in 145 image sequences. For the preliminary and the patient study, 3 experienced radiologists evaluated the image data using a 5-point Likert scale, focusing on overall image quality, artifact presence, diagnostic confidence, delineation of pathology, and image sharpness. Interrater agreement was assessed using Gwet's AC2, and an exploratory analysis (non-Moco vs SAMER Moco) was performed.

Results: Compared with non-Moco, the preliminary study demonstrated significant improvements across all imaging parameters and motion patterns with SAMER Moco (P < 0.001). Odds ratios favoring SAMER Moco were >999.999 for freedom of artifact and overall image quality (P < 0.0001). Excellent or good ratings for freedom of artifact were 52.4% with SAMER Moco, compared with 21.4% for non-Moco. Similarly, 66.7% of SAMER Moco images were rated excellent or good for overall image quality versus 21.4% for non-Moco. Multireader interrater agreement was excellent across all parameters.The patient study confirmed that SAMER Moco provided significantly superior image quality across all evaluated imaging parameters, particularly in the presence of motion (P < 0.001). Diagnostic confidence was rated as excellent or good in 95.1% of SAMER Moco cases, compared with 78.1% for non-Moco cases. Similarly, overall image quality was rated as excellent or good in 89.8% of SAMER Moco cases versus 65.9% for non-Moco cases. The odds ratios for diagnostic confidence and for overall image quality were 6.698 and 6.030, respectively, both favoring SAMER Moco (P < 0.0001). Multireader interrater agreement was excellent across all parameters.

Conclusions: The application of SAMER in T1-weighted imaging datasets is feasible in clinical routine and significantly increases image quality and diagnostic confidence in 1.5 T brain MRI by effectively reducing motion artifacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信