人类胎儿大脑年龄和性别相关R2*变化的全脑MRI评估。

IF 3.5 2区 医学 Q1 NEUROIMAGING
Lanxin Ji, Mark Duffy, Bosi Chen, Amyn Majbri, Christopher J. Trentacosta, Moriah Thomason
{"title":"人类胎儿大脑年龄和性别相关R2*变化的全脑MRI评估。","authors":"Lanxin Ji,&nbsp;Mark Duffy,&nbsp;Bosi Chen,&nbsp;Amyn Majbri,&nbsp;Christopher J. Trentacosta,&nbsp;Moriah Thomason","doi":"10.1002/hbm.70073","DOIUrl":null,"url":null,"abstract":"<p>Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain\",\"authors\":\"Lanxin Ji,&nbsp;Mark Duffy,&nbsp;Bosi Chen,&nbsp;Amyn Majbri,&nbsp;Christopher J. Trentacosta,&nbsp;Moriah Thomason\",\"doi\":\"10.1002/hbm.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70073\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

大脑中的铁对神经发育过程至关重要,因为它支持神经功能,包括氧气输送、电子传递和酶活性。然而,出生前脑铁的发育几乎不为人所知。通过对大量胎儿多回声平面成像(EPI)扫描样本(功能磁共振成像(fMRI)的标准序列)进行R2* (1/T2*)弛豫测量,本研究探讨了不同区域和组织段中铁的年龄和性别相关变化。我们的研究结果表明,大脑R2*水平在妊娠期间显著增加,跨越许多不同的区域,除了额叶。此外,在灰质和白质中,女性表现出比男性更快的R2*增长速度。这种性别效应在左脑岛尤为显著。这项工作代表了第一次核磁共振检查铁积累和性别差异在发育中的胎儿大脑。这也是首次在胎儿多回波功能MRI中建立R2*估计方法的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain

Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain

Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments. Our findings reveal that brain R2* levels significantly increase throughout gestation spanning many different regions, except the frontal lobe. Furthermore, females exhibit a faster rate of R2* increase compared to males, in both gray matter and white matter. This sex effect is particularly notable within the left insula. This work represents the first MRI examination of iron accumulation and sex differences in developing fetal brains. This is also the first study to establish R2* estimation methodology in fetal multiecho functional MRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信