1,8-桉树脑对大鼠良性前列腺增生的影响。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bahaa Al-Trad, Yazan Abu Haija, Alaa A Aljabali, Ghada Alomari, Lena Tahat, Muath Q Al-Ghadi
{"title":"1,8-桉树脑对大鼠良性前列腺增生的影响。","authors":"Bahaa Al-Trad, Yazan Abu Haija, Alaa A Aljabali, Ghada Alomari, Lena Tahat, Muath Q Al-Ghadi","doi":"10.2174/0113892010356355241222215343","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Benign prostatic hyperplasia is a non-malignant growth of the prostate gland; it's the most common prostatic growth in aging men. 1,8-cineole is a natural compound that is extracted from the essential oil of several aromatic plants including Eucalyptus spp. Recent studies have demonstrated the anti-inflammatory, antioxidant, and anticancer activities of 1,8-cineole. This study aims to investigate the effects of 1,8-cineole treatment on the development of BPH induced by testosterone in rats.</p><p><strong>Method: </strong>Thirty adult male rats were divided into three groups (n=10): a control group, an untreated BPH group that received subcutaneous injections of testosterone (3 mg/kg), and a BPH+cineole group that received 50 mg/kg of cineole intraperitoneally in addition to testosterone for 21 days. Histological changes, serum testosterone, and dihydrotestosterone (DHT) levels, prostatic tissue content of the inflammatory biomarkers interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), oxidative stress biomarkers superoxide dismutase (SOD) and malondialdehyde (MDA), angiogenesis biomarker vascular endothelial growth factor (VEGF-A), cellular proliferation biomarker proliferating cell nuclear antigen (PCNA), transforming growth factor beta-1 (TGF-β1), and pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes were analyzed.</p><p><strong>Results: </strong>Cineole treatment led to a reduction in the prostate weight-to-body weight ratio, as well as the restoration of histopathological changes caused by testosterone. Cineole treatment reduced the serum levels of testosterone and DHT, and the prostatic tissue levels of IL-1β, TNF-α, VEGF-A, PCNA, and TGF-β1 compared to those in the BPH group. Additionally, cineole treatment enhanced the SOD activity and decreased the MDA levels in the prostate tissue. Finally, the mRNA expression of the Bax was increased, while the expression of the Bcl-2 was decreased by cineole.</p><p><strong>Conclusion: </strong>Our results highlight the effectiveness of cineole in preventing BPH development in rats. This preventive effect was attributed to the regulation of inflammatory responses, oxidative stress, cellular proliferation, and apoptosis.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of 1,8-Cineole Treatment on Benign Prostatic Hyperplasia in Rats.\",\"authors\":\"Bahaa Al-Trad, Yazan Abu Haija, Alaa A Aljabali, Ghada Alomari, Lena Tahat, Muath Q Al-Ghadi\",\"doi\":\"10.2174/0113892010356355241222215343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Benign prostatic hyperplasia is a non-malignant growth of the prostate gland; it's the most common prostatic growth in aging men. 1,8-cineole is a natural compound that is extracted from the essential oil of several aromatic plants including Eucalyptus spp. Recent studies have demonstrated the anti-inflammatory, antioxidant, and anticancer activities of 1,8-cineole. This study aims to investigate the effects of 1,8-cineole treatment on the development of BPH induced by testosterone in rats.</p><p><strong>Method: </strong>Thirty adult male rats were divided into three groups (n=10): a control group, an untreated BPH group that received subcutaneous injections of testosterone (3 mg/kg), and a BPH+cineole group that received 50 mg/kg of cineole intraperitoneally in addition to testosterone for 21 days. Histological changes, serum testosterone, and dihydrotestosterone (DHT) levels, prostatic tissue content of the inflammatory biomarkers interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), oxidative stress biomarkers superoxide dismutase (SOD) and malondialdehyde (MDA), angiogenesis biomarker vascular endothelial growth factor (VEGF-A), cellular proliferation biomarker proliferating cell nuclear antigen (PCNA), transforming growth factor beta-1 (TGF-β1), and pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes were analyzed.</p><p><strong>Results: </strong>Cineole treatment led to a reduction in the prostate weight-to-body weight ratio, as well as the restoration of histopathological changes caused by testosterone. Cineole treatment reduced the serum levels of testosterone and DHT, and the prostatic tissue levels of IL-1β, TNF-α, VEGF-A, PCNA, and TGF-β1 compared to those in the BPH group. Additionally, cineole treatment enhanced the SOD activity and decreased the MDA levels in the prostate tissue. Finally, the mRNA expression of the Bax was increased, while the expression of the Bcl-2 was decreased by cineole.</p><p><strong>Conclusion: </strong>Our results highlight the effectiveness of cineole in preventing BPH development in rats. This preventive effect was attributed to the regulation of inflammatory responses, oxidative stress, cellular proliferation, and apoptosis.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010356355241222215343\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010356355241222215343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:良性前列腺增生是前列腺的一种非恶性增生;这是老年男性最常见的前列腺增生。1,8-桉树脑是一种天然化合物,从桉树等几种芳香植物的精油中提取,最近的研究表明1,8-桉树脑具有抗炎、抗氧化和抗癌活性。本研究旨在探讨1,8-桉树脑对睾酮诱导的大鼠前列腺增生的影响。方法:将30只成年雄性大鼠分为3组(n=10):对照组,未治疗BPH组皮下注射睾酮(3 mg/kg), BPH+桉树脑组在睾酮基础上腹腔注射50 mg/kg桉树脑,持续21 d。组织学变化、血清睾酮和双氢睾酮(DHT)水平、前列腺组织炎症生物标志物白介素1β (IL-1β)和肿瘤坏死因子α (TNF-α)含量、氧化应激生物标志物超氧化物歧化酶(SOD)和丙二醛(MDA)含量、血管生成生物标志物血管内皮生长因子(VEGF-A)、细胞增殖生物标志物增殖细胞核抗原(PCNA)、转化生长因子β -1 (TGF-β1)含量、以及促凋亡(Bax)和抗凋亡(Bcl-2)基因的表达。结果:桉树脑治疗可降低前列腺重量与体重比,恢复睾酮引起的组织病理改变。与BPH组相比,桉树脑治疗降低了血清睾酮和DHT水平,前列腺组织IL-1β、TNF-α、VEGF-A、PCNA和TGF-β1水平。此外,桉树脑处理可提高前列腺组织中SOD活性,降低MDA水平。最后,桉树脑使Bax的mRNA表达增加,而Bcl-2的表达降低。结论:桉树脑在预防大鼠前列腺增生中的作用。这种预防作用归因于炎症反应、氧化应激、细胞增殖和凋亡的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of 1,8-Cineole Treatment on Benign Prostatic Hyperplasia in Rats.

Background: Benign prostatic hyperplasia is a non-malignant growth of the prostate gland; it's the most common prostatic growth in aging men. 1,8-cineole is a natural compound that is extracted from the essential oil of several aromatic plants including Eucalyptus spp. Recent studies have demonstrated the anti-inflammatory, antioxidant, and anticancer activities of 1,8-cineole. This study aims to investigate the effects of 1,8-cineole treatment on the development of BPH induced by testosterone in rats.

Method: Thirty adult male rats were divided into three groups (n=10): a control group, an untreated BPH group that received subcutaneous injections of testosterone (3 mg/kg), and a BPH+cineole group that received 50 mg/kg of cineole intraperitoneally in addition to testosterone for 21 days. Histological changes, serum testosterone, and dihydrotestosterone (DHT) levels, prostatic tissue content of the inflammatory biomarkers interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), oxidative stress biomarkers superoxide dismutase (SOD) and malondialdehyde (MDA), angiogenesis biomarker vascular endothelial growth factor (VEGF-A), cellular proliferation biomarker proliferating cell nuclear antigen (PCNA), transforming growth factor beta-1 (TGF-β1), and pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes were analyzed.

Results: Cineole treatment led to a reduction in the prostate weight-to-body weight ratio, as well as the restoration of histopathological changes caused by testosterone. Cineole treatment reduced the serum levels of testosterone and DHT, and the prostatic tissue levels of IL-1β, TNF-α, VEGF-A, PCNA, and TGF-β1 compared to those in the BPH group. Additionally, cineole treatment enhanced the SOD activity and decreased the MDA levels in the prostate tissue. Finally, the mRNA expression of the Bax was increased, while the expression of the Bcl-2 was decreased by cineole.

Conclusion: Our results highlight the effectiveness of cineole in preventing BPH development in rats. This preventive effect was attributed to the regulation of inflammatory responses, oxidative stress, cellular proliferation, and apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信