强化学习视角下的记忆巩固。

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1538741
Jong Won Lee, Min Whan Jung
{"title":"强化学习视角下的记忆巩固。","authors":"Jong Won Lee, Min Whan Jung","doi":"10.3389/fncom.2024.1538741","DOIUrl":null,"url":null,"abstract":"<p><p>Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns. Additionally, a growing body of evidence indicates the involvement of the hippocampus, especially the CA1 region, in valuation processes. Based on these findings, we propose that the CA3 region of the hippocampus generates diverse activity patterns, while the CA1 region evaluates and reinforces those patterns most likely to maximize rewards. This framework closely parallels Dyna, a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an agent performs offline simulations to supplement trial-and-error value learning, greatly accelerating the learning process. We suggest that memory consolidation might be viewed as a process of deriving optimal strategies based on simulations derived from limited experiences, rather than merely strengthening incidental memories. From this perspective, memory consolidation functions as a form of offline reinforcement learning, aimed at enhancing adaptive decision-making.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1538741"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751224/pdf/","citationCount":"0","resultStr":"{\"title\":\"Memory consolidation from a reinforcement learning perspective.\",\"authors\":\"Jong Won Lee, Min Whan Jung\",\"doi\":\"10.3389/fncom.2024.1538741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns. Additionally, a growing body of evidence indicates the involvement of the hippocampus, especially the CA1 region, in valuation processes. Based on these findings, we propose that the CA3 region of the hippocampus generates diverse activity patterns, while the CA1 region evaluates and reinforces those patterns most likely to maximize rewards. This framework closely parallels Dyna, a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an agent performs offline simulations to supplement trial-and-error value learning, greatly accelerating the learning process. We suggest that memory consolidation might be viewed as a process of deriving optimal strategies based on simulations derived from limited experiences, rather than merely strengthening incidental memories. From this perspective, memory consolidation functions as a form of offline reinforcement learning, aimed at enhancing adaptive decision-making.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"18 \",\"pages\":\"1538741\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1538741\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1538741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

记忆巩固是指将临时记忆转化为长期记忆的过程。人们普遍认为,新的经历最初以快速联想记忆的形式储存在海马体中,然后经历一个巩固过程,在大脑的其他区域建立更永久的痕迹。在过去的二十年中,对人类和动物的研究表明,海马体不仅对记忆至关重要,而且对想象力和未来规划也至关重要,CA3区域在产生新的活动模式方面发挥着关键作用。此外,越来越多的证据表明,海马体,特别是CA1区域,参与评估过程。基于这些发现,我们提出海马体的CA3区域产生多种活动模式,而CA1区域评估并强化那些最有可能最大化奖励的模式。这个框架与Sutton在1991年引入的强化学习算法Dyna非常相似。在Dyna中,代理执行离线模拟以补充试错值学习,大大加快了学习过程。我们认为,记忆巩固可能被视为一个基于有限经验的模拟得出最佳策略的过程,而不仅仅是强化偶然记忆。从这个角度来看,记忆巩固是离线强化学习的一种形式,旨在增强适应性决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory consolidation from a reinforcement learning perspective.

Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns. Additionally, a growing body of evidence indicates the involvement of the hippocampus, especially the CA1 region, in valuation processes. Based on these findings, we propose that the CA3 region of the hippocampus generates diverse activity patterns, while the CA1 region evaluates and reinforces those patterns most likely to maximize rewards. This framework closely parallels Dyna, a reinforcement learning algorithm introduced by Sutton in 1991. In Dyna, an agent performs offline simulations to supplement trial-and-error value learning, greatly accelerating the learning process. We suggest that memory consolidation might be viewed as a process of deriving optimal strategies based on simulations derived from limited experiences, rather than merely strengthening incidental memories. From this perspective, memory consolidation functions as a form of offline reinforcement learning, aimed at enhancing adaptive decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信