系统发育距离的贝叶斯推断:重新审视特征值方法。

IF 2 4区 数学 Q2 BIOLOGY
Matthew J Penn, Neil Scheidwasser, Christl A Donnelly, David A Duchêne, Samir Bhatt
{"title":"系统发育距离的贝叶斯推断:重新审视特征值方法。","authors":"Matthew J Penn, Neil Scheidwasser, Christl A Donnelly, David A Duchêne, Samir Bhatt","doi":"10.1007/s11538-024-01403-z","DOIUrl":null,"url":null,"abstract":"<p><p>Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR <math><mrow><mo>+</mo> <mi>Γ</mi></mrow> </math> ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis. In this paper, we derive a hybrid approach between these two methods, incorporating <math><mrow><mi>Γ</mi> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo></mrow> </math> -distributed rate variation and heterotachy into a hierarchical Bayesian GTR-style framework. Our approach is differentiable and amenable to both stochastic gradient descent for optimisation and Hamiltonian Markov chain Monte Carlo for Bayesian inference. We show the utility of our approach by studying hypotheses regarding the origins of the eukaryotic cell within the context of a universal tree of life and find evidence for a two-domain theory.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"32"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference of Phylogenetic Distances: Revisiting the Eigenvalue Approach.\",\"authors\":\"Matthew J Penn, Neil Scheidwasser, Christl A Donnelly, David A Duchêne, Samir Bhatt\",\"doi\":\"10.1007/s11538-024-01403-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR <math><mrow><mo>+</mo> <mi>Γ</mi></mrow> </math> ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis. In this paper, we derive a hybrid approach between these two methods, incorporating <math><mrow><mi>Γ</mi> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo></mrow> </math> -distributed rate variation and heterotachy into a hierarchical Bayesian GTR-style framework. Our approach is differentiable and amenable to both stochastic gradient descent for optimisation and Hamiltonian Markov chain Monte Carlo for Bayesian inference. We show the utility of our approach by studying hypotheses regarding the origins of the eukaryotic cell within the context of a universal tree of life and find evidence for a two-domain theory.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 2\",\"pages\":\"32\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01403-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01403-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用遗传数据来推断基于马尔可夫替代模型的分子序列对之间的进化距离是系统发育学中一个常见的过程,特别是在选择一个好的起始树进行改进时。许多进化模式可以使用封闭形式的替代模型精确建模,包括流行的DNA数据通用时间可逆模型(GTR)。对于更复杂的生物现象,如谱系特异性进化速率随时间的变化(异缘性),需要其他方法,如具有速率变化的GTR (GTR + Γ),但不承认分析解决方案,也不自动允许对贝叶斯分析至关重要的似然计算。在本文中,我们推导了这两种方法的混合方法,将Γ (α, α) -分布速率变化和异速结合到一个分层贝叶斯gtr风格框架中。我们的方法是可微的,适用于随机梯度下降优化和哈密顿马尔可夫链蒙特卡罗贝叶斯推理。我们通过在普遍生命树的背景下研究关于真核细胞起源的假设,并为双域理论找到证据,展示了我们方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Inference of Phylogenetic Distances: Revisiting the Eigenvalue Approach.

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR + Γ ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis. In this paper, we derive a hybrid approach between these two methods, incorporating Γ ( α , α ) -distributed rate variation and heterotachy into a hierarchical Bayesian GTR-style framework. Our approach is differentiable and amenable to both stochastic gradient descent for optimisation and Hamiltonian Markov chain Monte Carlo for Bayesian inference. We show the utility of our approach by studying hypotheses regarding the origins of the eukaryotic cell within the context of a universal tree of life and find evidence for a two-domain theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信