基因编辑在三阴性乳腺癌研究中的应用

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuying Feng, Jixia Li, Aifen Yan, Xiangxing Zhu, Ligang Zhang, Dongsheng Tang, Lian Liu
{"title":"基因编辑在三阴性乳腺癌研究中的应用","authors":"Shuying Feng,&nbsp;Jixia Li,&nbsp;Aifen Yan,&nbsp;Xiangxing Zhu,&nbsp;Ligang Zhang,&nbsp;Dongsheng Tang,&nbsp;Lian Liu","doi":"10.1002/cbf.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway. Gene editing technology has played an important role in the discovery of new therapeutic targets. Through the use of gene editing technology, breast cancer-related genes are systematically edited to regulate key regulatory factors on related pathways or key tumor suppressor genes such as <i>FOXC1</i> and <i>BRCA</i>, and the results are analyzed in cell or animal experiments, and the target is obtained from the experimental results, which provides important clues for the development of new drugs. This approach provides an innovative way to find more effective treatment strategies and inhibit tumor growth. In addition, gene editing technology has also promoted the personalization of breast cancer treatment. By analyzing a patient's genomic information, researchers can pinpoint key genetic mutations in a patient's tumor and design personalized treatments. This personalized treatment approach is expected to improve the therapeutic effect and reduce adverse reactions. Finally, the application of gene editing technology also provides support for the development of breast cancer immunotherapy. By editing immune cells to make them more potent against tumors, researchers are trying to develop more effective immunotherapies to bring new treatment options to breast cancer patients.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Gene Editing in Triple-Negative Breast Cancer Research\",\"authors\":\"Shuying Feng,&nbsp;Jixia Li,&nbsp;Aifen Yan,&nbsp;Xiangxing Zhu,&nbsp;Ligang Zhang,&nbsp;Dongsheng Tang,&nbsp;Lian Liu\",\"doi\":\"10.1002/cbf.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway. Gene editing technology has played an important role in the discovery of new therapeutic targets. Through the use of gene editing technology, breast cancer-related genes are systematically edited to regulate key regulatory factors on related pathways or key tumor suppressor genes such as <i>FOXC1</i> and <i>BRCA</i>, and the results are analyzed in cell or animal experiments, and the target is obtained from the experimental results, which provides important clues for the development of new drugs. This approach provides an innovative way to find more effective treatment strategies and inhibit tumor growth. In addition, gene editing technology has also promoted the personalization of breast cancer treatment. By analyzing a patient's genomic information, researchers can pinpoint key genetic mutations in a patient's tumor and design personalized treatments. This personalized treatment approach is expected to improve the therapeutic effect and reduce adverse reactions. Finally, the application of gene editing technology also provides support for the development of breast cancer immunotherapy. By editing immune cells to make them more potent against tumors, researchers are trying to develop more effective immunotherapies to bring new treatment options to breast cancer patients.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着基因编辑技术的快速发展,其在乳腺癌中的应用逐渐成为研究的焦点。本文综述了基因编辑技术在乳腺癌治疗中的应用,并讨论了其面临的挑战和未来的发展方向。将概述基因编辑技术在乳腺癌治疗中的关键应用领域,包括发现新的治疗靶点和开发与该途径相关的药物。基因编辑技术在发现新的治疗靶点方面发挥了重要作用。通过利用基因编辑技术,对乳腺癌相关基因进行系统编辑,调控相关通路上的关键调控因子或FOXC1、BRCA等关键抑癌基因,并在细胞或动物实验中对结果进行分析,从实验结果中获得靶点,为新药开发提供重要线索。这种方法为寻找更有效的治疗策略和抑制肿瘤生长提供了一种创新的方法。此外,基因编辑技术也促进了乳腺癌治疗的个性化。通过分析患者的基因组信息,研究人员可以确定患者肿瘤中的关键基因突变,并设计个性化的治疗方案。这种个性化的治疗方法有望提高治疗效果,减少不良反应。最后,基因编辑技术的应用也为乳腺癌免疫疗法的发展提供了支持。通过编辑免疫细胞使其更有效地对抗肿瘤,研究人员正试图开发更有效的免疫疗法,为乳腺癌患者带来新的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Gene Editing in Triple-Negative Breast Cancer Research

With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway. Gene editing technology has played an important role in the discovery of new therapeutic targets. Through the use of gene editing technology, breast cancer-related genes are systematically edited to regulate key regulatory factors on related pathways or key tumor suppressor genes such as FOXC1 and BRCA, and the results are analyzed in cell or animal experiments, and the target is obtained from the experimental results, which provides important clues for the development of new drugs. This approach provides an innovative way to find more effective treatment strategies and inhibit tumor growth. In addition, gene editing technology has also promoted the personalization of breast cancer treatment. By analyzing a patient's genomic information, researchers can pinpoint key genetic mutations in a patient's tumor and design personalized treatments. This personalized treatment approach is expected to improve the therapeutic effect and reduce adverse reactions. Finally, the application of gene editing technology also provides support for the development of breast cancer immunotherapy. By editing immune cells to make them more potent against tumors, researchers are trying to develop more effective immunotherapies to bring new treatment options to breast cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信