一个氨基酸取代对海葵环氧醇合成酶CYP443D1 (NvEAS)催化性能的影响

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
S S Gorina, N V Lantsova, Y Y Toporkova, A N Grechkin
{"title":"一个氨基酸取代对海葵环氧醇合成酶CYP443D1 (NvEAS)催化性能的影响","authors":"S S Gorina, N V Lantsova, Y Y Toporkova, A N Grechkin","doi":"10.1134/S160767292460057X","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center. Initially, CYP74 enzymes were discovered in plants, where they are widespread and play an important role in the lipoxygenase cascade. Later, CYP74-like enzymes of other families were identified in different taxa, including animals. Based on the results of phylogenetic studies, structures, and catalytic mechanisms, they were combined along with the CYP74 family into the CYP74 clan. One of the CYP74 clan enzymes is the epoxyalcohol synthase NvEAS (CYP443D1) of the starlet sea anemone Nematostella vectensis. A mutant form of NvEAS with a P93G substitution, that acquired additional hydroperoxide lyase activity, was obtained by site-directed mutagenesis. Before this work, only the results of site-directed mutagenesis of enzymes of the CYP74 family, but not of the CYP74 clan, were described. Moreover, in this work, the transformation of epoxyalcohol synthase into hydroperoxide lyase is described for the first time. These results confirm the previously stated assumption about the evolution of CYP74 enzymes, namely the epoxyalcohol synthase - hydroperoxide lyase - allene oxide synthase - divinyl ether synthase pathway.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alteration of the Catalytic Properties of the Epoxyalcohol Synthase CYP443D1 (NvEAS) of the Starlet Sea Anemone Nematostella vectensis as a Result of a Single Amino Acid Substitution.\",\"authors\":\"S S Gorina, N V Lantsova, Y Y Toporkova, A N Grechkin\",\"doi\":\"10.1134/S160767292460057X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center. Initially, CYP74 enzymes were discovered in plants, where they are widespread and play an important role in the lipoxygenase cascade. Later, CYP74-like enzymes of other families were identified in different taxa, including animals. Based on the results of phylogenetic studies, structures, and catalytic mechanisms, they were combined along with the CYP74 family into the CYP74 clan. One of the CYP74 clan enzymes is the epoxyalcohol synthase NvEAS (CYP443D1) of the starlet sea anemone Nematostella vectensis. A mutant form of NvEAS with a P93G substitution, that acquired additional hydroperoxide lyase activity, was obtained by site-directed mutagenesis. Before this work, only the results of site-directed mutagenesis of enzymes of the CYP74 family, but not of the CYP74 clan, were described. Moreover, in this work, the transformation of epoxyalcohol synthase into hydroperoxide lyase is described for the first time. These results confirm the previously stated assumption about the evolution of CYP74 enzymes, namely the epoxyalcohol synthase - hydroperoxide lyase - allene oxide synthase - divinyl ether synthase pathway.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/S160767292460057X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/S160767292460057X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

P450超家族细胞色素在自然界广泛存在;在所有被研究的需氧生物中都发现了它们。虽然不同家族的细胞色素P450之间的相似性较低,但该超家族的所有酶都具有相似的三级结构。此外,所有的细胞色素P450,包括CYP74家族的酶,在其序列中都含有底物识别位点,这些位点形成催化中心。最初,CYP74酶是在植物中发现的,它们在植物中广泛存在,并在脂氧合酶级联反应中发挥重要作用。后来,在包括动物在内的不同分类群中发现了其他科的cyp74样酶。根据系统发育、结构和催化机制的研究结果,将它们与CYP74家族合并为CYP74家族。CYP74族酶之一是海葵Nematostella vectensis的环氧醇合成酶NvEAS (CYP443D1)。通过定点诱变获得了具有P93G取代的NvEAS突变体,该突变体获得了额外的氢过氧化物裂解酶活性。在这项工作之前,只有CYP74家族的酶的定点诱变结果,而不是CYP74家族的酶,被描述。此外,本文还首次描述了环氧醇合成酶转化为氢过氧化物裂解酶的过程。这些结果证实了先前关于CYP74酶进化的假设,即环氧醇合成酶-氢过氧化物裂解酶-氧化丙烯合成酶-二乙烯醚合成酶途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alteration of the Catalytic Properties of the Epoxyalcohol Synthase CYP443D1 (NvEAS) of the Starlet Sea Anemone Nematostella vectensis as a Result of a Single Amino Acid Substitution.

Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center. Initially, CYP74 enzymes were discovered in plants, where they are widespread and play an important role in the lipoxygenase cascade. Later, CYP74-like enzymes of other families were identified in different taxa, including animals. Based on the results of phylogenetic studies, structures, and catalytic mechanisms, they were combined along with the CYP74 family into the CYP74 clan. One of the CYP74 clan enzymes is the epoxyalcohol synthase NvEAS (CYP443D1) of the starlet sea anemone Nematostella vectensis. A mutant form of NvEAS with a P93G substitution, that acquired additional hydroperoxide lyase activity, was obtained by site-directed mutagenesis. Before this work, only the results of site-directed mutagenesis of enzymes of the CYP74 family, but not of the CYP74 clan, were described. Moreover, in this work, the transformation of epoxyalcohol synthase into hydroperoxide lyase is described for the first time. These results confirm the previously stated assumption about the evolution of CYP74 enzymes, namely the epoxyalcohol synthase - hydroperoxide lyase - allene oxide synthase - divinyl ether synthase pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信