癌症干细胞调控作为治疗干预的目标:对乳腺癌、宫颈癌和肺癌的认识。

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sakshi Kevat, Archie Mistry, Naman Oza, Mohit Majmudar, Netra Patel, Rushabh Shah, A. V. Ramachandran, Ritu Chauhan, Shafiul Haque, Nidarshana Chaturvedi Parashar, Hardeep Singh Tuli, Gaurav Parashar
{"title":"癌症干细胞调控作为治疗干预的目标:对乳腺癌、宫颈癌和肺癌的认识。","authors":"Sakshi Kevat,&nbsp;Archie Mistry,&nbsp;Naman Oza,&nbsp;Mohit Majmudar,&nbsp;Netra Patel,&nbsp;Rushabh Shah,&nbsp;A. V. Ramachandran,&nbsp;Ritu Chauhan,&nbsp;Shafiul Haque,&nbsp;Nidarshana Chaturvedi Parashar,&nbsp;Hardeep Singh Tuli,&nbsp;Gaurav Parashar","doi":"10.1007/s12013-025-01666-w","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24− cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.</p></div>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":"83 2","pages":"1521 - 1535"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer\",\"authors\":\"Sakshi Kevat,&nbsp;Archie Mistry,&nbsp;Naman Oza,&nbsp;Mohit Majmudar,&nbsp;Netra Patel,&nbsp;Rushabh Shah,&nbsp;A. V. Ramachandran,&nbsp;Ritu Chauhan,&nbsp;Shafiul Haque,&nbsp;Nidarshana Chaturvedi Parashar,&nbsp;Hardeep Singh Tuli,&nbsp;Gaurav Parashar\",\"doi\":\"10.1007/s12013-025-01666-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24− cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.</p></div>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\"83 2\",\"pages\":\"1521 - 1535\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12013-025-01666-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12013-025-01666-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤干细胞(Cancer Stem Cells, CSCs)在许多恶性肿瘤的发生、耐药和复发中起着重要作用。这些肿瘤细胞亚群具有自我更新、分化和抵抗常规治疗的潜力,突出了它们在癌症病因学中的重要性。本文探讨了干细胞在乳腺癌、宫颈癌和肺癌中的调控机制,强调了它们的可塑性、自我更新和分化能力。CD44+/CD24-细胞是已知的乳腺CSCs标志物。在宫颈癌csc中发现了CD133和ALDH等标志物。同样,在肺癌中,CD44、CD133和ALDH鉴定的CSCs与侵袭性肿瘤行为和不良治疗效果有关。这些肿瘤之间的共性突出了在治疗工作中靶向CSCs的普遍必要性。然而,CSC活性的复杂性,如它们与肿瘤微环境和特定信号通路的相互作用,在不同的癌症类型之间存在差异,需要专门的方法。Wnt/β-catenin、Notch、Hedgehog通路是重要的信号通路之一,针对这些通路,可能对乳腺癌、肺癌、宫颈癌及其CSCs有改善作用。临床前数据表明,靶向特定的信号通路可以消除CSCs,但正在进行的临床试验是在患者中使用信号通路抑制剂。在最近的研究中,有报道称基于靶向特定标记物的CAR - T可能用于联合治疗。正在进行的纳米生物技术相关研究也可以在CSCs的诊断和治疗目的中发挥重要作用,因为纳米材料可以用于CSCs的精确靶向和鉴定。进一步研究信号通路及其前体的靶向性可能是将干细胞用于癌症治疗的正确步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer

Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24− cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信