Xiao Tang , Kun Wang , Zihan Liu , Xu Luo , Ming Wu , Hui Ding , Gang Liu , Qian Du
{"title":"功能壳聚糖/HP-β-CD水凝胶用于大黄衍生纳米囊泡和山奈酚的靶向共递送以减轻溃疡性结肠炎。","authors":"Xiao Tang , Kun Wang , Zihan Liu , Xu Luo , Ming Wu , Hui Ding , Gang Liu , Qian Du","doi":"10.1016/j.carbpol.2024.123206","DOIUrl":null,"url":null,"abstract":"<div><div>Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity. The hydrogel's cross-linking network effectively encapsulates RNs, forming the Kae/CMCHD@RNs system. Rheology, SEM, TGA, degradation behavior, in vitro drug release, and a macrophage-targeted permeability test were performed. The results indicate that the hydrogel utilizes pH/enzyme sensitivity to ensure sustained release in the colon, while also facilitating targeted delivery to macrophages. In vivo imaging further reveals a prolonged local drug retention time in the colon. Moreover, both in vitro and in vivo studies demonstrate RNs and Kae exhibit synergistic therapeutic effects for UC, including inflammation reduction, oxidative stress alleviation, M1-to-M2 macrophage repolarization, and restoration of the intestinal barrier. Consequently, this study underscores the potential of Kae/CMCHD@RNs as a promising therapeutic approach for managing UC.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"Article 123206"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis\",\"authors\":\"Xiao Tang , Kun Wang , Zihan Liu , Xu Luo , Ming Wu , Hui Ding , Gang Liu , Qian Du\",\"doi\":\"10.1016/j.carbpol.2024.123206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity. The hydrogel's cross-linking network effectively encapsulates RNs, forming the Kae/CMCHD@RNs system. Rheology, SEM, TGA, degradation behavior, in vitro drug release, and a macrophage-targeted permeability test were performed. The results indicate that the hydrogel utilizes pH/enzyme sensitivity to ensure sustained release in the colon, while also facilitating targeted delivery to macrophages. In vivo imaging further reveals a prolonged local drug retention time in the colon. Moreover, both in vitro and in vivo studies demonstrate RNs and Kae exhibit synergistic therapeutic effects for UC, including inflammation reduction, oxidative stress alleviation, M1-to-M2 macrophage repolarization, and restoration of the intestinal barrier. Consequently, this study underscores the potential of Kae/CMCHD@RNs as a promising therapeutic approach for managing UC.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"352 \",\"pages\":\"Article 123206\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724014322\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724014322","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis
Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity. The hydrogel's cross-linking network effectively encapsulates RNs, forming the Kae/CMCHD@RNs system. Rheology, SEM, TGA, degradation behavior, in vitro drug release, and a macrophage-targeted permeability test were performed. The results indicate that the hydrogel utilizes pH/enzyme sensitivity to ensure sustained release in the colon, while also facilitating targeted delivery to macrophages. In vivo imaging further reveals a prolonged local drug retention time in the colon. Moreover, both in vitro and in vivo studies demonstrate RNs and Kae exhibit synergistic therapeutic effects for UC, including inflammation reduction, oxidative stress alleviation, M1-to-M2 macrophage repolarization, and restoration of the intestinal barrier. Consequently, this study underscores the potential of Kae/CMCHD@RNs as a promising therapeutic approach for managing UC.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.