金属硫族化物纳米团簇与单杂原子结合的结构变化。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-02-06 Epub Date: 2025-01-22 DOI:10.1021/acs.jpca.4c07000
Xilai Li, Shana Havenridge, Habib Gholipour-Ranjbar, Dylan Forbes, Wyatt Crain, Cong Liu, Julia Laskin
{"title":"金属硫族化物纳米团簇与单杂原子结合的结构变化。","authors":"Xilai Li, Shana Havenridge, Habib Gholipour-Ranjbar, Dylan Forbes, Wyatt Crain, Cong Liu, Julia Laskin","doi":"10.1021/acs.jpca.4c07000","DOIUrl":null,"url":null,"abstract":"<p><p>Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important. In this study, we present a benchmarking approach based on metal chalcogenide NCs as a model system. We synthesized a series of bimetallic, iron-cobalt chalcogenide NCs [Co<sub>6-<i>x</i></sub>Fe<sub><i>x</i></sub>S<sub>8</sub>(PEt<sub>3</sub>)<sub>6</sub>]<sup>+</sup> (<i>x</i> = 0-6) (PEt = triethyl phosphine) and investigated the effect of heteroatoms in the octahedral metal chalcogenide core on their size and electronic properties. Using ion mobility-mass spectrometry (IM-MS), we observed a gradual increase in the collision cross section (CCS) with an increase in the number of Fe atoms in the core. DFT calculations combined with trajectory method CCS simulations successfully reproduced this trend, revealing that the increase in cluster size is primarily due to changes in metal-ligand bond lengths, while the electronic properties of the core remain largely unchanged. Moreover, this method allowed us to exclude certain multiplicity states of the NCs, as their CCS values were significantly different from those predicted for the lowest-energy structures. This study demonstrates that gas-phase IM-MS is a powerful technique for detecting subtle size differences in atomically precise NCs, which are often challenging to observe using conventional NC characterization methods. Accurate CCS measurements are established as a benchmark for comparison with theoretical calculations. The excellent correspondence between experimental data and theoretical predictions establishes a robust foundation for investigating structural changes of transition metal NCs of interest to a broad range of applications.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"1310-1317"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Changes in Metal Chalcogenide Nanoclusters Associated with Single Heteroatom Incorporation.\",\"authors\":\"Xilai Li, Shana Havenridge, Habib Gholipour-Ranjbar, Dylan Forbes, Wyatt Crain, Cong Liu, Julia Laskin\",\"doi\":\"10.1021/acs.jpca.4c07000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important. In this study, we present a benchmarking approach based on metal chalcogenide NCs as a model system. We synthesized a series of bimetallic, iron-cobalt chalcogenide NCs [Co<sub>6-<i>x</i></sub>Fe<sub><i>x</i></sub>S<sub>8</sub>(PEt<sub>3</sub>)<sub>6</sub>]<sup>+</sup> (<i>x</i> = 0-6) (PEt = triethyl phosphine) and investigated the effect of heteroatoms in the octahedral metal chalcogenide core on their size and electronic properties. Using ion mobility-mass spectrometry (IM-MS), we observed a gradual increase in the collision cross section (CCS) with an increase in the number of Fe atoms in the core. DFT calculations combined with trajectory method CCS simulations successfully reproduced this trend, revealing that the increase in cluster size is primarily due to changes in metal-ligand bond lengths, while the electronic properties of the core remain largely unchanged. Moreover, this method allowed us to exclude certain multiplicity states of the NCs, as their CCS values were significantly different from those predicted for the lowest-energy structures. This study demonstrates that gas-phase IM-MS is a powerful technique for detecting subtle size differences in atomically precise NCs, which are often challenging to observe using conventional NC characterization methods. Accurate CCS measurements are established as a benchmark for comparison with theoretical calculations. The excellent correspondence between experimental data and theoretical predictions establishes a robust foundation for investigating structural changes of transition metal NCs of interest to a broad range of applications.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"1310-1317\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c07000\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07000","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

原子精确纳米团簇(NCs)是设计具有独特性能的材料和界面的有前途的基石。通过将杂原子掺入核芯,可以精确地调谐纳米碳管的电子和磁性能。为了准确地预测这些性质,通常采用密度泛函理论(DFT),这使得对DFT结果进行严格的基准测试尤为重要。在这项研究中,我们提出了一种基于金属硫族碳纳米管作为模型系统的基准测试方法。合成了一系列双金属铁钴硫族化合物[Co6-xFexS8(PEt3)6]+ (x = 0-6) (PEt =三乙基膦),并研究了八面体金属硫族化合物芯中杂原子对其尺寸和电子性能的影响。利用离子迁移质谱(IM-MS),我们观察到随着核中铁原子数量的增加,碰撞截面(CCS)逐渐增加。DFT计算结合轨迹法CCS模拟成功地再现了这一趋势,揭示了簇大小的增加主要是由于金属配体键长度的变化,而核心的电子性质基本保持不变。此外,该方法允许我们排除某些碳纳米化合物的多重态,因为它们的CCS值与最低能量结构的预测值显着不同。这项研究表明,气相IM-MS是一种强大的技术,用于检测原子精度NC的细微尺寸差异,这通常是传统NC表征方法难以观察到的。建立了精确的CCS测量值作为与理论计算比较的基准。实验数据和理论预测之间的良好对应关系为研究广泛应用的过渡金属nc的结构变化奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Changes in Metal Chalcogenide Nanoclusters Associated with Single Heteroatom Incorporation.

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important. In this study, we present a benchmarking approach based on metal chalcogenide NCs as a model system. We synthesized a series of bimetallic, iron-cobalt chalcogenide NCs [Co6-xFexS8(PEt3)6]+ (x = 0-6) (PEt = triethyl phosphine) and investigated the effect of heteroatoms in the octahedral metal chalcogenide core on their size and electronic properties. Using ion mobility-mass spectrometry (IM-MS), we observed a gradual increase in the collision cross section (CCS) with an increase in the number of Fe atoms in the core. DFT calculations combined with trajectory method CCS simulations successfully reproduced this trend, revealing that the increase in cluster size is primarily due to changes in metal-ligand bond lengths, while the electronic properties of the core remain largely unchanged. Moreover, this method allowed us to exclude certain multiplicity states of the NCs, as their CCS values were significantly different from those predicted for the lowest-energy structures. This study demonstrates that gas-phase IM-MS is a powerful technique for detecting subtle size differences in atomically precise NCs, which are often challenging to observe using conventional NC characterization methods. Accurate CCS measurements are established as a benchmark for comparison with theoretical calculations. The excellent correspondence between experimental data and theoretical predictions establishes a robust foundation for investigating structural changes of transition metal NCs of interest to a broad range of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信