分子单晶中铂(II)和钯(II)二聚体的可逆压变色

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paul Steeger, Tobias Theiss, Dominik Schwab, Iván Maisuls, Vedhanth Senthiappan Vellaiappan Uthayasurian, Robert Schmidt, Ilya Kupenko, Carmen Sanchez-Valle, Steffen Michaelis de Vasconcellos, Nikos L. Doltsinis, Cristian A. Strassert, Rudolf Bratschitsch
{"title":"分子单晶中铂(II)和钯(II)二聚体的可逆压变色","authors":"Paul Steeger, Tobias Theiss, Dominik Schwab, Iván Maisuls, Vedhanth Senthiappan Vellaiappan Uthayasurian, Robert Schmidt, Ilya Kupenko, Carmen Sanchez-Valle, Steffen Michaelis de Vasconcellos, Nikos L. Doltsinis, Cristian A. Strassert, Rudolf Bratschitsch","doi":"10.1021/acs.nanolett.4c04993","DOIUrl":null,"url":null,"abstract":"Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable. Recently, the ligand-controlled aggregation of platinum(II) and palladium(II) complexes into molecular single crystals and the controlled formation of metal–metal contacts have been demonstrated. Here, we show how the metal–metal distance can be tuned in a controlled way by exerting pressure on the molecular crystal. Using optical spectroscopy inside a diamond anvil cell, we find strong and reversible piezochromism up to 18 GPa. Using time-dependent density functional theory, we attribute the wavelength shift to a reduction in the metal–metal distance and enhanced π orbital overlap in the dimers.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"74 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible Piezochromism of Platinum(II) and Palladium(II) Dimers in Molecular Single Crystals\",\"authors\":\"Paul Steeger, Tobias Theiss, Dominik Schwab, Iván Maisuls, Vedhanth Senthiappan Vellaiappan Uthayasurian, Robert Schmidt, Ilya Kupenko, Carmen Sanchez-Valle, Steffen Michaelis de Vasconcellos, Nikos L. Doltsinis, Cristian A. Strassert, Rudolf Bratschitsch\",\"doi\":\"10.1021/acs.nanolett.4c04993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable. Recently, the ligand-controlled aggregation of platinum(II) and palladium(II) complexes into molecular single crystals and the controlled formation of metal–metal contacts have been demonstrated. Here, we show how the metal–metal distance can be tuned in a controlled way by exerting pressure on the molecular crystal. Using optical spectroscopy inside a diamond anvil cell, we find strong and reversible piezochromism up to 18 GPa. Using time-dependent density functional theory, we attribute the wavelength shift to a reduction in the metal–metal distance and enhanced π orbital overlap in the dimers.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04993\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04993","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属配合物以其高效发光而闻名,并有望应用于从生物成像到发光二极管的各种应用。在溶液中,两个配合物的金属中心之间的相互作用成为可能,并极大地改变了光物理性质。对于实际设备,由这些分子组成的固态材料是优选的。近年来,铂(II)和钯(II)配合物在配体控制下聚集成分子单晶,并在控制下形成金属-金属接触。在这里,我们展示了如何通过对分子晶体施加压力来以一种可控的方式调节金属-金属距离。利用金刚石砧细胞内部的光谱学,我们发现了高达18gpa的强可逆压变色。利用时变密度泛函理论,我们将波长位移归因于金属-金属距离的减小和二聚体中π轨道重叠的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversible Piezochromism of Platinum(II) and Palladium(II) Dimers in Molecular Single Crystals

Reversible Piezochromism of Platinum(II) and Palladium(II) Dimers in Molecular Single Crystals
Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable. Recently, the ligand-controlled aggregation of platinum(II) and palladium(II) complexes into molecular single crystals and the controlled formation of metal–metal contacts have been demonstrated. Here, we show how the metal–metal distance can be tuned in a controlled way by exerting pressure on the molecular crystal. Using optical spectroscopy inside a diamond anvil cell, we find strong and reversible piezochromism up to 18 GPa. Using time-dependent density functional theory, we attribute the wavelength shift to a reduction in the metal–metal distance and enhanced π orbital overlap in the dimers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信