Guangming Niu, Jutao Jiang, Xiangyu Zeng, Xin Liu, Xiaowei Wang, Yutong Zhang, Li Che, Laizhi Sui, Guorong Wu, Kaijun Yuan, Xueming Yang
{"title":"利用无铅钙钛矿中自困激子寿命和高阶声子非调和性的双灵敏度进行宽温光学测温","authors":"Guangming Niu, Jutao Jiang, Xiangyu Zeng, Xin Liu, Xiaowei Wang, Yutong Zhang, Li Che, Laizhi Sui, Guorong Wu, Kaijun Yuan, Xueming Yang","doi":"10.1002/anie.202422424","DOIUrl":null,"url":null,"abstract":"Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577% K−1 at 330 K and remaining above 0.5% K−1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"57 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites\",\"authors\":\"Guangming Niu, Jutao Jiang, Xiangyu Zeng, Xin Liu, Xiaowei Wang, Yutong Zhang, Li Che, Laizhi Sui, Guorong Wu, Kaijun Yuan, Xueming Yang\",\"doi\":\"10.1002/anie.202422424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577% K−1 at 330 K and remaining above 0.5% K−1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202422424\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577% K−1 at 330 K and remaining above 0.5% K−1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.