{"title":"用于宏观信号放大的柱状[5]芳烃酶指示界面干扰","authors":"Mohit Yadav, Anvi Sangwan, Reek Mahapatra, Nidhi Bhardwaj, Kaushik Mondal, Debabrata Patra","doi":"10.1021/acs.langmuir.4c03984","DOIUrl":null,"url":null,"abstract":"Enzyme-instructed signal generation at liquid–liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil–water interface via a copper-mediated “click” reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process. By varying concentrations of P[5]A derivatives and ascorbic acid (AA), we fine-tune the surface coverage of droplets, offering control over the jamming dynamics. Additionally, we introduce a signal amplification mechanism where the dephosphorylation of a dormant reductant by alkaline phosphatase (ALP) triggers the “click” reaction at the interface. This system enables the quantification of ALP activity through macroscopic surface changes with inhibition of ALP by heavy metals and metal chelators reducing surface coverage. This approach represents a promising method for amplifying molecular signals into detectable macroscopic outputs with potential applications in biochemical sensing and materials science.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme-Instructed Interfacial Jamming of Pillar[5]arenes for Macroscopic Signal Amplification\",\"authors\":\"Mohit Yadav, Anvi Sangwan, Reek Mahapatra, Nidhi Bhardwaj, Kaushik Mondal, Debabrata Patra\",\"doi\":\"10.1021/acs.langmuir.4c03984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzyme-instructed signal generation at liquid–liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil–water interface via a copper-mediated “click” reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process. By varying concentrations of P[5]A derivatives and ascorbic acid (AA), we fine-tune the surface coverage of droplets, offering control over the jamming dynamics. Additionally, we introduce a signal amplification mechanism where the dephosphorylation of a dormant reductant by alkaline phosphatase (ALP) triggers the “click” reaction at the interface. This system enables the quantification of ALP activity through macroscopic surface changes with inhibition of ALP by heavy metals and metal chelators reducing surface coverage. This approach represents a promising method for amplifying molecular signals into detectable macroscopic outputs with potential applications in biochemical sensing and materials science.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03984\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03984","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enzyme-Instructed Interfacial Jamming of Pillar[5]arenes for Macroscopic Signal Amplification
Enzyme-instructed signal generation at liquid–liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil–water interface via a copper-mediated “click” reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process. By varying concentrations of P[5]A derivatives and ascorbic acid (AA), we fine-tune the surface coverage of droplets, offering control over the jamming dynamics. Additionally, we introduce a signal amplification mechanism where the dephosphorylation of a dormant reductant by alkaline phosphatase (ALP) triggers the “click” reaction at the interface. This system enables the quantification of ALP activity through macroscopic surface changes with inhibition of ALP by heavy metals and metal chelators reducing surface coverage. This approach represents a promising method for amplifying molecular signals into detectable macroscopic outputs with potential applications in biochemical sensing and materials science.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).