利用麦芽糖糊精基纳米海绵快速去除阳离子染料的高效、便捷的净化策略

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Chaochao Wen, Yu Huang, Wenjia Zhang, Jiping Tian, Chuan Dong, Cheng Yang, Wenting Liang
{"title":"利用麦芽糖糊精基纳米海绵快速去除阳离子染料的高效、便捷的净化策略","authors":"Chaochao Wen, Yu Huang, Wenjia Zhang, Jiping Tian, Chuan Dong, Cheng Yang, Wenting Liang","doi":"10.1016/j.seppur.2025.131702","DOIUrl":null,"url":null,"abstract":"Developing new adsorbents and studying their adsorption mechanisms can greatly assist in addressing environmental pollution issues. Herein, the maltodextrin-based nanosponges (MD-SPs) were facilely synthesized by esterification reaction at room temperature. The porous features, nanostructure, and swelling capacities of the resulting MD-SPs can be regulated by altering the crosslinking agent, which controls the adsorption properties. Using nine cationic dyes as model adsorbates, the results showed that MD-SPs could adsorb a large amount of cationic dyes in a short time. Especially, MD-SP-1 could rapidly adsorb over 90 % of most cationic dyes within 3 min, and the maximal adsorption quantity (Q<sub>m</sub>) of cationic red X-GRL (CRX) was as high as 2137.81 mg/g. The adsorption behaviors were meticulously investigated by multiple adsorption kinetic and thermodynamic models. Furthermore, the integrated analysis of experimental and theoretical calculations results demonstrated that the electrostatic force, hydrogen bonding, hydrophobic interaction, cation-π interaction, and π-π stacking may collectively facilitate the capture of dye molecules. Notably, the absorbent offered excellent anti-interference capabilities, high stability, and reusability, making it an ideal adsorbent for the rapid and batch treatment of dye wastewater. These discoveries may provide valuable references for the theoretical and practical study of adsorbents and offer new insights into the development of advanced maltodextrin-based adsorbents.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"12 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and convenient purification strategy using maltodextrin-based nanosponges for rapid removal of cationic dyes\",\"authors\":\"Chaochao Wen, Yu Huang, Wenjia Zhang, Jiping Tian, Chuan Dong, Cheng Yang, Wenting Liang\",\"doi\":\"10.1016/j.seppur.2025.131702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing new adsorbents and studying their adsorption mechanisms can greatly assist in addressing environmental pollution issues. Herein, the maltodextrin-based nanosponges (MD-SPs) were facilely synthesized by esterification reaction at room temperature. The porous features, nanostructure, and swelling capacities of the resulting MD-SPs can be regulated by altering the crosslinking agent, which controls the adsorption properties. Using nine cationic dyes as model adsorbates, the results showed that MD-SPs could adsorb a large amount of cationic dyes in a short time. Especially, MD-SP-1 could rapidly adsorb over 90 % of most cationic dyes within 3 min, and the maximal adsorption quantity (Q<sub>m</sub>) of cationic red X-GRL (CRX) was as high as 2137.81 mg/g. The adsorption behaviors were meticulously investigated by multiple adsorption kinetic and thermodynamic models. Furthermore, the integrated analysis of experimental and theoretical calculations results demonstrated that the electrostatic force, hydrogen bonding, hydrophobic interaction, cation-π interaction, and π-π stacking may collectively facilitate the capture of dye molecules. Notably, the absorbent offered excellent anti-interference capabilities, high stability, and reusability, making it an ideal adsorbent for the rapid and batch treatment of dye wastewater. These discoveries may provide valuable references for the theoretical and practical study of adsorbents and offer new insights into the development of advanced maltodextrin-based adsorbents.\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.seppur.2025.131702\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131702","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发新型吸附剂并研究其吸附机理对解决环境污染问题具有重要意义。本文在室温下通过酯化反应制备了麦芽糖糊精基纳米海绵(MD-SPs)。通过改变交联剂,可以调节MD-SPs的孔隙特征、纳米结构和膨胀能力,从而控制其吸附性能。以9种阳离子染料为模型吸附剂,结果表明,MD-SPs能在短时间内吸附大量阳离子染料。特别是,MD-SP-1在3 min内可快速吸附90% %以上的阳离子染料,对阳离子红X-GRL (CRX)的最大吸附量(Qm)高达2137.81 mg/g。采用多种吸附动力学和热力学模型对其吸附行为进行了细致的研究。此外,实验和理论计算结果的综合分析表明,静电力、氢键、疏水相互作用、阳离子-π相互作用和π-π堆积共同促进了染料分子的捕获。值得注意的是,该吸附剂具有出色的抗干扰能力,高稳定性和可重复使用性,使其成为染料废水快速批量处理的理想吸附剂。这些发现可为吸附剂的理论和实践研究提供有价值的参考,并为开发先进的麦芽糖糊精基吸附剂提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and convenient purification strategy using maltodextrin-based nanosponges for rapid removal of cationic dyes

Efficient and convenient purification strategy using maltodextrin-based nanosponges for rapid removal of cationic dyes
Developing new adsorbents and studying their adsorption mechanisms can greatly assist in addressing environmental pollution issues. Herein, the maltodextrin-based nanosponges (MD-SPs) were facilely synthesized by esterification reaction at room temperature. The porous features, nanostructure, and swelling capacities of the resulting MD-SPs can be regulated by altering the crosslinking agent, which controls the adsorption properties. Using nine cationic dyes as model adsorbates, the results showed that MD-SPs could adsorb a large amount of cationic dyes in a short time. Especially, MD-SP-1 could rapidly adsorb over 90 % of most cationic dyes within 3 min, and the maximal adsorption quantity (Qm) of cationic red X-GRL (CRX) was as high as 2137.81 mg/g. The adsorption behaviors were meticulously investigated by multiple adsorption kinetic and thermodynamic models. Furthermore, the integrated analysis of experimental and theoretical calculations results demonstrated that the electrostatic force, hydrogen bonding, hydrophobic interaction, cation-π interaction, and π-π stacking may collectively facilitate the capture of dye molecules. Notably, the absorbent offered excellent anti-interference capabilities, high stability, and reusability, making it an ideal adsorbent for the rapid and batch treatment of dye wastewater. These discoveries may provide valuable references for the theoretical and practical study of adsorbents and offer new insights into the development of advanced maltodextrin-based adsorbents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信