2023年10月14日日环食期间热层中性温度变化的GOLD观测

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Saurav Aryal, J. Scott Evans, Jerry D. Lumpe, Fazlul I. Laskar, Quan Gan, Wenbin Wang, Richard W. Eastes
{"title":"2023年10月14日日环食期间热层中性温度变化的GOLD观测","authors":"Saurav Aryal, J. Scott Evans, Jerry D. Lumpe, Fazlul I. Laskar, Quan Gan, Wenbin Wang, Richard W. Eastes","doi":"10.1029/2024gl110676","DOIUrl":null,"url":null,"abstract":"The 14 October 2023 annular solar eclipse was visible from the US Pacific coast to Brazil's east coast. NASA's Global-scale Observations of Limb and Disk (GOLD) mission observed the first synoptic thermospheric temperature changes from a geo-stationary orbit above 47.5°W longitude between 17 and 20 UT during the eclipse. These daytime thermospheric changes were derived using GOLD's disk far ultraviolet (FUV) measurements. A significant decrease in the daytime disk temperatures (∼100 K) was seen near the peak annularity compared to the day before (baseline). The temperature reduction's spatial morphology is also like that of the eclipse shadow. Previous modeling studies of other eclipses typically show a much smaller temperature decrease (∼30–40 K; a factor of 2–3 lower) compared to GOLD observations. These first of kind results provide new insight into the dynamic response of the coupled thermosphere and ionosphere system to transient solar events, including eclipses.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"50 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOLD Observations of Thermospheric Neutral Temperature Variability During the 14 October 2023 Annular Solar Eclipse\",\"authors\":\"Saurav Aryal, J. Scott Evans, Jerry D. Lumpe, Fazlul I. Laskar, Quan Gan, Wenbin Wang, Richard W. Eastes\",\"doi\":\"10.1029/2024gl110676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 14 October 2023 annular solar eclipse was visible from the US Pacific coast to Brazil's east coast. NASA's Global-scale Observations of Limb and Disk (GOLD) mission observed the first synoptic thermospheric temperature changes from a geo-stationary orbit above 47.5°W longitude between 17 and 20 UT during the eclipse. These daytime thermospheric changes were derived using GOLD's disk far ultraviolet (FUV) measurements. A significant decrease in the daytime disk temperatures (∼100 K) was seen near the peak annularity compared to the day before (baseline). The temperature reduction's spatial morphology is also like that of the eclipse shadow. Previous modeling studies of other eclipses typically show a much smaller temperature decrease (∼30–40 K; a factor of 2–3 lower) compared to GOLD observations. These first of kind results provide new insight into the dynamic response of the coupled thermosphere and ionosphere system to transient solar events, including eclipses.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024gl110676\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110676","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

2023年10月14日,从美国太平洋海岸到巴西东海岸都可以看到日环食。在日食期间,NASA的全球尺度翼盘观测(GOLD)任务在17至20 UT之间从西经47.5°以上的地球静止轨道观测到第一次天气热层温度变化。这些白天的热层变化是通过GOLD的圆盘远紫外线(FUV)测量得出的。与前一天(基线)相比,在峰值环状附近可以看到白天磁盘温度(~ 100 K)的显著下降。温度下降的空间形态也与日食阴影相似。以前对其他日食的模拟研究通常显示温度下降幅度要小得多(~ 30-40 K;(低2-3倍)。这些首次的结果为热层和电离层耦合系统对瞬态太阳事件(包括日食)的动态响应提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GOLD Observations of Thermospheric Neutral Temperature Variability During the 14 October 2023 Annular Solar Eclipse
The 14 October 2023 annular solar eclipse was visible from the US Pacific coast to Brazil's east coast. NASA's Global-scale Observations of Limb and Disk (GOLD) mission observed the first synoptic thermospheric temperature changes from a geo-stationary orbit above 47.5°W longitude between 17 and 20 UT during the eclipse. These daytime thermospheric changes were derived using GOLD's disk far ultraviolet (FUV) measurements. A significant decrease in the daytime disk temperatures (∼100 K) was seen near the peak annularity compared to the day before (baseline). The temperature reduction's spatial morphology is also like that of the eclipse shadow. Previous modeling studies of other eclipses typically show a much smaller temperature decrease (∼30–40 K; a factor of 2–3 lower) compared to GOLD observations. These first of kind results provide new insight into the dynamic response of the coupled thermosphere and ionosphere system to transient solar events, including eclipses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信