mi -曼巴:一种混合运动图像脑电图分类模型与曼巴的全球扫描

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minghan Guo, Xu Han, Hongxing Liu, Jianing Zhu, Jie Zhang, Yanru Bai, Guangjian Ni
{"title":"mi -曼巴:一种混合运动图像脑电图分类模型与曼巴的全球扫描","authors":"Minghan Guo, Xu Han, Hongxing Liu, Jianing Zhu, Jie Zhang, Yanru Bai, Guangjian Ni","doi":"10.1111/nyas.15288","DOIUrl":null,"url":null,"abstract":"Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences. Mamba, a state space model–based method, excels in modeling long sequences. To overcome the limitations of existing EEG decoding models and exploit Mamba's potential in EEG analysis, we propose MI-Mamba, a model integrating CNN with Mamba for motor imagery (MI) data decoding. MI-Mamba processes multi-channel EEG signals through a single convolutional layer to capture spatial features in the local temporal domain, followed by a Mamba module that processes global temporal features. A fully connected, layer-based classifier is used to derive classification results. Evaluated on two public MI datasets, MI-Mamba achieves 80.59% accuracy in the four-class MI task of the BCI Competition IV 2a dataset and 84.42% in the two-class task of the BCI Competition IV 2b dataset, while reducing parameter count by nearly six times compared to the most advanced previous models. These results highlight MI-Mamba's effectiveness in MI decoding and its potential as a new backbone for general EEG decoding.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"74 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning\",\"authors\":\"Minghan Guo, Xu Han, Hongxing Liu, Jianing Zhu, Jie Zhang, Yanru Bai, Guangjian Ni\",\"doi\":\"10.1111/nyas.15288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences. Mamba, a state space model–based method, excels in modeling long sequences. To overcome the limitations of existing EEG decoding models and exploit Mamba's potential in EEG analysis, we propose MI-Mamba, a model integrating CNN with Mamba for motor imagery (MI) data decoding. MI-Mamba processes multi-channel EEG signals through a single convolutional layer to capture spatial features in the local temporal domain, followed by a Mamba module that processes global temporal features. A fully connected, layer-based classifier is used to derive classification results. Evaluated on two public MI datasets, MI-Mamba achieves 80.59% accuracy in the four-class MI task of the BCI Competition IV 2a dataset and 84.42% in the two-class task of the BCI Competition IV 2b dataset, while reducing parameter count by nearly six times compared to the most advanced previous models. These results highlight MI-Mamba's effectiveness in MI decoding and its potential as a new backbone for general EEG decoding.\",\"PeriodicalId\":8250,\"journal\":{\"name\":\"Annals of the New York Academy of Sciences\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the New York Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1111/nyas.15288\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15288","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

深度学习已经彻底改变了脑电图(EEG)解码,卷积神经网络(cnn)是一个主要的工具。然而,cnn在时序脑电图数据的长期依赖性方面存在问题。长短期记忆和变压器等模型提高了性能,但仍然面临计算效率和长序列的挑战。Mamba是一种基于状态空间模型的方法,擅长长序列的建模。为了克服现有脑电图解码模型的局限性,挖掘曼巴在脑电图分析中的潜力,我们提出了一种将CNN和曼巴神经网络集成在一起的运动图像(MI)数据解码模型MI-Mamba。MI-Mamba通过单个卷积层处理多通道脑电图信号,以捕获局部时域的空间特征,然后由一个Mamba模块处理全局时域特征。使用一个全连接的、基于层的分类器来获得分类结果。在两个公共MI数据集上进行评估,MI- mamba在BCI Competition IV 2a数据集的四类MI任务中达到80.59%的准确率,在BCI Competition IV 2b数据集的两类任务中达到84.42%的准确率,同时与之前最先进的模型相比,减少了近6倍的参数计数。这些结果突出了MI- mamba在MI解码中的有效性和作为一般EEG解码新骨干的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning

MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning
Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences. Mamba, a state space model–based method, excels in modeling long sequences. To overcome the limitations of existing EEG decoding models and exploit Mamba's potential in EEG analysis, we propose MI-Mamba, a model integrating CNN with Mamba for motor imagery (MI) data decoding. MI-Mamba processes multi-channel EEG signals through a single convolutional layer to capture spatial features in the local temporal domain, followed by a Mamba module that processes global temporal features. A fully connected, layer-based classifier is used to derive classification results. Evaluated on two public MI datasets, MI-Mamba achieves 80.59% accuracy in the four-class MI task of the BCI Competition IV 2a dataset and 84.42% in the two-class task of the BCI Competition IV 2b dataset, while reducing parameter count by nearly six times compared to the most advanced previous models. These results highlight MI-Mamba's effectiveness in MI decoding and its potential as a new backbone for general EEG decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信