Ying Li, Jing-Yu Wang, Jun-Wei Yin, Peng-Fei Wang, Zong-Lin Liu, Jie Shu, Ting-Feng Yi
{"title":"揭开无阳极锌金属电池的奥秘:从关键挑战到可行的解决方案","authors":"Ying Li, Jing-Yu Wang, Jun-Wei Yin, Peng-Fei Wang, Zong-Lin Liu, Jie Shu, Ting-Feng Yi","doi":"10.1016/j.ensm.2025.104056","DOIUrl":null,"url":null,"abstract":"The anode-free battery has garnered wide attention because of its high theoretical energy density, simplified structure, and minimal costs. Over the past few decades, the successful commercialization of lithium-ion batteries featuring lithium-free anodes—often referred to as “rocking-chair” lithium-ion batteries—has been prominently witnessed worldwide. Aqueous zinc-ion batteries (ZIBs) have attracted extensive interest among researchers for their safety, cost-effectiveness, environmental friendliness, and high ionic conductivity of the electrolyte. Nevertheless, the practical application of ZIBs is predominantly hindered by the dendritic growth of Zn metal anodes, leading to poor cycling stability and potential safety concerns. Therefore, the development of aqueous ZIBs anodes utilizing zinc-free metal materials to replace traditional zinc metal anodes represents a significant advancement. Moreover, comprehensive reviews on this topic are scarce. In this context, we systematically review the emerging Zn-free “rocking-chair” ZIBs (ZFIBs) that employ zinc-based alloy anodes as substitutes for zinc metal anodes. Initially, we introduce the fundamental principles, advantages, and challenges associated with ZFIBs. Subsequently, we provide an overview of the design principles and recent advancements in ZFIBs featuring zinc-free anodes. The review encompasses the progress made in various types of zinc-free anode materials within aqueous ZFIBs, including metals/alloys, metal oxides, metal chalcogenides, MXene materials, organic compounds, in situ solid-electrolyte interphase film stable zinc-free anodes, and other zinc-free anodes. Finally, we offer insights on the future perspectives of “rocking-chair” ZIBs. It is our hope that this paper provides novel strategies for the design and development of zinc-free anodes.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"33 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Mysteries of Anode-Free Zn Metal Batteries: From key challenges to viable solutions\",\"authors\":\"Ying Li, Jing-Yu Wang, Jun-Wei Yin, Peng-Fei Wang, Zong-Lin Liu, Jie Shu, Ting-Feng Yi\",\"doi\":\"10.1016/j.ensm.2025.104056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The anode-free battery has garnered wide attention because of its high theoretical energy density, simplified structure, and minimal costs. Over the past few decades, the successful commercialization of lithium-ion batteries featuring lithium-free anodes—often referred to as “rocking-chair” lithium-ion batteries—has been prominently witnessed worldwide. Aqueous zinc-ion batteries (ZIBs) have attracted extensive interest among researchers for their safety, cost-effectiveness, environmental friendliness, and high ionic conductivity of the electrolyte. Nevertheless, the practical application of ZIBs is predominantly hindered by the dendritic growth of Zn metal anodes, leading to poor cycling stability and potential safety concerns. Therefore, the development of aqueous ZIBs anodes utilizing zinc-free metal materials to replace traditional zinc metal anodes represents a significant advancement. Moreover, comprehensive reviews on this topic are scarce. In this context, we systematically review the emerging Zn-free “rocking-chair” ZIBs (ZFIBs) that employ zinc-based alloy anodes as substitutes for zinc metal anodes. Initially, we introduce the fundamental principles, advantages, and challenges associated with ZFIBs. Subsequently, we provide an overview of the design principles and recent advancements in ZFIBs featuring zinc-free anodes. The review encompasses the progress made in various types of zinc-free anode materials within aqueous ZFIBs, including metals/alloys, metal oxides, metal chalcogenides, MXene materials, organic compounds, in situ solid-electrolyte interphase film stable zinc-free anodes, and other zinc-free anodes. Finally, we offer insights on the future perspectives of “rocking-chair” ZIBs. It is our hope that this paper provides novel strategies for the design and development of zinc-free anodes.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2025.104056\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104056","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unveiling the Mysteries of Anode-Free Zn Metal Batteries: From key challenges to viable solutions
The anode-free battery has garnered wide attention because of its high theoretical energy density, simplified structure, and minimal costs. Over the past few decades, the successful commercialization of lithium-ion batteries featuring lithium-free anodes—often referred to as “rocking-chair” lithium-ion batteries—has been prominently witnessed worldwide. Aqueous zinc-ion batteries (ZIBs) have attracted extensive interest among researchers for their safety, cost-effectiveness, environmental friendliness, and high ionic conductivity of the electrolyte. Nevertheless, the practical application of ZIBs is predominantly hindered by the dendritic growth of Zn metal anodes, leading to poor cycling stability and potential safety concerns. Therefore, the development of aqueous ZIBs anodes utilizing zinc-free metal materials to replace traditional zinc metal anodes represents a significant advancement. Moreover, comprehensive reviews on this topic are scarce. In this context, we systematically review the emerging Zn-free “rocking-chair” ZIBs (ZFIBs) that employ zinc-based alloy anodes as substitutes for zinc metal anodes. Initially, we introduce the fundamental principles, advantages, and challenges associated with ZFIBs. Subsequently, we provide an overview of the design principles and recent advancements in ZFIBs featuring zinc-free anodes. The review encompasses the progress made in various types of zinc-free anode materials within aqueous ZFIBs, including metals/alloys, metal oxides, metal chalcogenides, MXene materials, organic compounds, in situ solid-electrolyte interphase film stable zinc-free anodes, and other zinc-free anodes. Finally, we offer insights on the future perspectives of “rocking-chair” ZIBs. It is our hope that this paper provides novel strategies for the design and development of zinc-free anodes.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.