Xuan Zheng , Siheng Yang , Dingwen Chen , Yuxuan Kong , Tianhua Cui , Xueli Zheng , Haiyan Fu , Weichao Xue , Shuang Li , Chong Cheng , Hua Chen , Ruixiang Li , Jiaqi Xu
{"title":"冠醚功能化促进铜基mof上CO2电还原成乙烯","authors":"Xuan Zheng , Siheng Yang , Dingwen Chen , Yuxuan Kong , Tianhua Cui , Xueli Zheng , Haiyan Fu , Weichao Xue , Shuang Li , Chong Cheng , Hua Chen , Ruixiang Li , Jiaqi Xu","doi":"10.1039/d4cc06719c","DOIUrl":null,"url":null,"abstract":"<div><div>The electroconversion of CO<sub>2</sub> into ethylene (C<sub>2</sub>H<sub>4</sub>) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the C<sub>2</sub>H<sub>4</sub> selectivity of copper-based MOFs, improving C<sub>2</sub>H<sub>4</sub> faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH<sub>2</sub> by 3.1, 1.7, and 2.4 times, respectively. Among these, CuBTC achieves the highest FE for C<sub>2</sub>H<sub>4</sub>, reaching <em>ca.</em> 52% at 120 mA cm<sup>−2</sup>. Control experiments and <em>in situ</em> Fourier transform infrared spectroscopy (FTIR) reveal that CE stabilizes Cu<sup>+</sup> during the catalyst's <em>in situ</em> reconstruction, promoting the formation of Cu<sub>2</sub>O, which is more favorable for C<sub>2</sub>H<sub>4</sub> production. Furthermore, CE increases the local concentration of K<sup>+</sup> at the catalyst–electrolyte interface, enhancing *CO adsorption and facilitating C–C coupling reactions. This process promotes the formation of key intermediates, such as *CO*CO, *CO*COH and *COCHO, ultimately boosting C<sub>2</sub>H<sub>4</sub> production.</div></div>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"61 14","pages":"Pages 2993-2996"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crown ether functionalization boosts CO2 electroreduction to ethylene on copper-based MOFs†\",\"authors\":\"Xuan Zheng , Siheng Yang , Dingwen Chen , Yuxuan Kong , Tianhua Cui , Xueli Zheng , Haiyan Fu , Weichao Xue , Shuang Li , Chong Cheng , Hua Chen , Ruixiang Li , Jiaqi Xu\",\"doi\":\"10.1039/d4cc06719c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electroconversion of CO<sub>2</sub> into ethylene (C<sub>2</sub>H<sub>4</sub>) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the C<sub>2</sub>H<sub>4</sub> selectivity of copper-based MOFs, improving C<sub>2</sub>H<sub>4</sub> faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH<sub>2</sub> by 3.1, 1.7, and 2.4 times, respectively. Among these, CuBTC achieves the highest FE for C<sub>2</sub>H<sub>4</sub>, reaching <em>ca.</em> 52% at 120 mA cm<sup>−2</sup>. Control experiments and <em>in situ</em> Fourier transform infrared spectroscopy (FTIR) reveal that CE stabilizes Cu<sup>+</sup> during the catalyst's <em>in situ</em> reconstruction, promoting the formation of Cu<sub>2</sub>O, which is more favorable for C<sub>2</sub>H<sub>4</sub> production. Furthermore, CE increases the local concentration of K<sup>+</sup> at the catalyst–electrolyte interface, enhancing *CO adsorption and facilitating C–C coupling reactions. This process promotes the formation of key intermediates, such as *CO*CO, *CO*COH and *COCHO, ultimately boosting C<sub>2</sub>H<sub>4</sub> production.</div></div>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"61 14\",\"pages\":\"Pages 2993-2996\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1359734525001211\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1359734525001211","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
二氧化碳电转化为乙烯(C2H4)为解决环境和能源挑战提供了一个有前途的解决方案。冠醚(CE)改性显著提高了铜基mof对C2H4的选择性,使CuBTC、CuBDC和CuBDC- nh2中的C2H4法达化效率(FE)分别提高了3.1倍、1.7倍和2.4倍。其中,cutc对C2H4的FE最高,在120 mA cm−2时达到约52%。控制实验和原位傅里叶变换红外光谱(FTIR)结果表明,CE在催化剂原位重构过程中稳定Cu+,促进Cu2O的生成,更有利于C2H4的生成。此外,CE增加了催化剂-电解质界面处K+的局部浓度,增强了*CO的吸附,促进了C-C偶联反应。这一过程促进了*CO*CO、*CO*COH和*COCHO等关键中间体的形成,最终促进了C2H4的生成。
Crown ether functionalization boosts CO2 electroreduction to ethylene on copper-based MOFs†
The electroconversion of CO2 into ethylene (C2H4) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the C2H4 selectivity of copper-based MOFs, improving C2H4 faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH2 by 3.1, 1.7, and 2.4 times, respectively. Among these, CuBTC achieves the highest FE for C2H4, reaching ca. 52% at 120 mA cm−2. Control experiments and in situ Fourier transform infrared spectroscopy (FTIR) reveal that CE stabilizes Cu+ during the catalyst's in situ reconstruction, promoting the formation of Cu2O, which is more favorable for C2H4 production. Furthermore, CE increases the local concentration of K+ at the catalyst–electrolyte interface, enhancing *CO adsorption and facilitating C–C coupling reactions. This process promotes the formation of key intermediates, such as *CO*CO, *CO*COH and *COCHO, ultimately boosting C2H4 production.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.