{"title":"共价有机框架作为去除有毒物质的优良吸附剂","authors":"Yubo Li, Jinxia Wei, Jian Wang, Yuanyuan Wang, Peishuang Yu, Yao Chen, Zhenjie Zhang","doi":"10.1039/d4cs00591k","DOIUrl":null,"url":null,"abstract":"Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, <em>etc.</em> The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed. The complex host–guest interactions mainly include electrostatic, π–π interactions, hydrogen bonding, hydrophobic interactions, and molecular sieving effects. In addition, the adsorption performance of various COF-based adsorbents will be compared, and strategies such as reasonable adjustment of pore size, introduction of functionalities, and preparation of composite materials can effectively improve the adsorption efficiency of toxins. Finally, we also point out the challenges and future development directions that COFs may face in the field of toxicant removal. It is expected that this review will provide valuable insights into the application of COF-based adsorbents in the removal of toxicants and the development of new materials.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"18 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent organic frameworks as superior adsorbents for the removal of toxic substances\",\"authors\":\"Yubo Li, Jinxia Wei, Jian Wang, Yuanyuan Wang, Peishuang Yu, Yao Chen, Zhenjie Zhang\",\"doi\":\"10.1039/d4cs00591k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, <em>etc.</em> The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed. The complex host–guest interactions mainly include electrostatic, π–π interactions, hydrogen bonding, hydrophobic interactions, and molecular sieving effects. In addition, the adsorption performance of various COF-based adsorbents will be compared, and strategies such as reasonable adjustment of pore size, introduction of functionalities, and preparation of composite materials can effectively improve the adsorption efficiency of toxins. Finally, we also point out the challenges and future development directions that COFs may face in the field of toxicant removal. It is expected that this review will provide valuable insights into the application of COF-based adsorbents in the removal of toxicants and the development of new materials.\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cs00591k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00591k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Covalent organic frameworks as superior adsorbents for the removal of toxic substances
Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, etc. The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed. The complex host–guest interactions mainly include electrostatic, π–π interactions, hydrogen bonding, hydrophobic interactions, and molecular sieving effects. In addition, the adsorption performance of various COF-based adsorbents will be compared, and strategies such as reasonable adjustment of pore size, introduction of functionalities, and preparation of composite materials can effectively improve the adsorption efficiency of toxins. Finally, we also point out the challenges and future development directions that COFs may face in the field of toxicant removal. It is expected that this review will provide valuable insights into the application of COF-based adsorbents in the removal of toxicants and the development of new materials.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences