Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil
{"title":"配备超声波传感器的可变速率喷雾器在苹果树种植园的田间验证","authors":"Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil","doi":"10.1007/s11119-024-10201-5","DOIUrl":null,"url":null,"abstract":"<p>In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field validation of a variable rate application sprayer equipped with ultrasonic sensors in apple tree plantations\",\"authors\":\"Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil\",\"doi\":\"10.1007/s11119-024-10201-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10201-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10201-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Field validation of a variable rate application sprayer equipped with ultrasonic sensors in apple tree plantations
In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.